Bacterial nanocellulose/MoS₂ hybrid aerogels as bifunctional adsorbent/photocatalyst membranes for *in-flow* water decontamination

Elias P. Ferreira-Neto^a, Sajjad Ullah^{ac}, Thais C.A. da Silva^a, Rafael R. Domeneguetti^a, Amanda P. Perissinotto^d, Fábio S. de Vicente^e, Ubirajara P. Rodrigues-Filho^d, Sidney J. L. Ribeiro^{a*}

^aInstitute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, Brazil ^cInstitute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan ^dInstitute of Chemistry of São Carlos, University of São Paulo, São Carlos, SP, Brazil ^eInstitute of Geosciences and Exact Sciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil

e-mail: sidney.jl.ribeiro@unesp.br

To address the limitations associated with the use powder nanophotocatalysts in water purification, in this study, we report the preparation of self-standing, porous hybrid aerogel membranes, (BC/MoS₂, with excellent adsorption-cum-photocatalytic properties. A molecular precision in the coating of quantum-confined MoS₂ nanostructures on bacterial cellulose (BC) nanofibrils was achieved through precursors' pre-adsorption on BC, followed by controlled hydrothermal growth, thus yielding hybrid BC/MoS₂ aerogels, characterized by high surface area and pore volume and controlled interlayer distance in the MoS₂ nanostructures. The resulting porous membranes, particularly those with inter-layer expanded MoS₂, when used inside a specifically design photoreactor, allow efficient *in-flow* removal of both organic molecule (MB) and heavy metal (Cr(VI)) ions, separately and/or simultaneously, under UV-vis light illumination and exhibit highly excellent recyclability and photostability. This efficient hybrid aerogel/photoreactor assembly represents a significant advancement in the use of selfstanding monolithic aerogel materials for photocatalytic applications in liquid media.

Acknowledgements

The authors would like to thank São Paulo Research Foundation (FAPESP) for financial support (grants #2015/22828-6 and 2018/01934-0,)