Silica aerogel pillars for vacuum glazing

C. Scherdel, J. Nauschütz, B. Büttner, G. Reichenauer

Bavarian Center for Applied Energy Research Magdalene-Schoch-Straße 3, 97074 Würzburg, Germany

christian.scherdel@zae-bayern.de

To provide a novel approach to evacuated window systems, highly transparent supports are required to keep the two glass panes of the window at distance (2 to 3 cm). One option for these supports are silica aerogels. The requirement profile for the supports are:

-	optical transparency (visible spectrum):	> 0.50 at a thickness of 2 cm (image quality,
		not translucency)
-	mechanical stiffness:	can withstand 1 MPa (1 bar) external uniaxial
		load at compressive strain < 5%
-	thermal conductivity (ambient conditions):	< 0.035 W/(m·K)

The synthesis of the aerogels was performed with TEOS as precursor by applying a 2-step process and subsequent supercritical drying with CO₂. By variation of synthesis parameters, a silica aerogel with a Young's modulus of 24.6 MPa, a visual transmission of 0.67 and a thermal conductivity of 0.0206 W/(m·K) was developed. These silica aerogels do not crack up to an external load of 1 MPa, at which they show a compressive strain less than 5% thus fulfilling the previously defined requirement profile. These silica aerogels were used in vacuum glazing where the window panes are only partially supported by the aerogel pillars (< 50%). Simulations predict Ug-values down to 0.5 Wm⁻²K⁻¹ for the window element, which is comparable or even lower than for current triple glazing [1].

Figure 1: Prototype of vacuum glazing with transparent silica aerogel pillars.

[1] B. Büttner et al., *Evacuated Glazing with Silica Aerogel Spacers*, EuroSun 2018 / ISES Conference Proceedings, (2018), doi:10.18086/eurosun2018.06.17