Novel Fluorinated Double-tail Surfactant Having a High Microemulsifying Power in Water/Supercritical CO₂ System

Masanobu Sagisaka^{*}, Junichi Oasa, Satoshi Hasegawa, Ryoko Toyokawa, and Atsushi Yoshizawa Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University (Bunkyo-cho 3, Hirosaki, Aomori 036-8561, JAPAN) E-mail: sagisaka@cc.hirosaki-u.ac.jp, Phone and fax: +81-172-39-3569

To develop an efficient surfactant for a water-in-scCO₂ microemulsion (W/scCO₂ μ E), we synthesized a novel double-tail anionic surfactant, sodium bis(1*H*,1*H*,2*H*,2*H*-heptadecafluorodecyl)-2-sulfoglutaconate (8FG(EO)₂), and examined phase behavior of the 8FG(EO)₂/water/CO₂ mixture at several CO₂ densities from 0.70 to 0.85 g/cm³ and water-to-surfactant molar ratios (W_0^c). 8FG(EO)₂ yielded a transparent single-phase with water contents larger than the solubility of water in pure CO₂, i.e. a W/scCO₂ μ E phase. With increasing W_0^c , a phase transition occurred from the μ E phase to a macroemulsion or a two-phase. Interestingly, this surfactant was found to microemulsify with W_0^c up to 60 through visual observation and UV-visible absorption spectrum measurements.

1. INTRODUCTION

Supercritical CO₂ (scCO₂) is nonpolar and has weak van der Waals forces [1]. It is not suitable for dissolving polar substances. This disadvantage has limited the application of scCO₂ to chemical processes such as separation, reaction, and material formation [1]. One of the most promising approaches for enhancing the solubility is to use reversed micelles with high-density aqueous cores in the continuous scCO₂ phase, in other words, water-in-scCO₂ microemulsion (W/scCO₂ μ E). Since such an organized fluid has the attractive characteristics of scCO₂ as well as the solvating properties of bulk water, it is expected to behave as a universal solvent [2-11].

A number of studies have been directed toward the development of a surfactant system that stabilizes W/scCO₂ µE formation. We have recently shown that a fluorinated analogue of Aerosol-OT surfactant, sodium bis(1*H*,1*H*,2*H*,2*H*-heptadecafluorodecyl)-2-sulfosuccinate (8FS(EO)₂), is the most effective formulation for stabilizing a transparent single-phase W/scCO₂ µE (Winsor-IV W/scCO₂ µE), where the molar water-to-surfactant-ratio W_0^c reaches a maximum value of 32 [2–11]. It was also found, however, that 8FS(EO)₂ forms a liquid crystal (LC)-like precipitate at values of W_0^c larger than 32. A promising strategies to prevent LC formation are to decrease length-to-breadth (L/B) ratio and to increase the critical packing parameter (CPP) of 8FS(EO)₂. As pointed out in our earlier paper [6], the smaller the L/B ratio is, the lower the stability of the LC structure is.

In the present work, with the aim of examining a suitable structure for W/scCO₂ μ E formation, we synthesized a 8FS(EO)₂-analogue surfactant, sodium bis(1*H*,1*H*,2*H*,2*H*-heptadecafluorodecyl)-2-sulfoglutaconate (8FG(EO)₂), which has an extra –CH₂- spacer in the head group region compared with 8FS(EO)₂, and studied the phase behavior of the 8FG(EO)₂W/scCO₂ mixture through visual/microscopic observations and UV-visible absorption spectrum measurements. The microemulsifying power of 8FG(EO)₂ in scCO₂ was

evaluated with the maximum W_0^c of W/scCO₂ μ E.

2. MATERIALS AND METHODS 2.1 MATERIALS

1H, 1H, 2H, 2H-heptadecafluoro-1-decanol (Kanto Chemical) and Glutaconic acid (Fluka) were used without further purification. The regent grade acetone, ethyl acetate, 1,4-dioxane, toluene, *p*-toluene sulfonic acid monohydrate, sodium hydrogensulfite were commercially obtained from wako pure chemical industries, and employed as received.

The surfactants used in this work was sodium bis(1H,1H,2H,2H)-heptadecafluorodecyl)-2-sulfoglutaconate, (8FG(EO)₂). This surfactant was synthesized in our laboratory and purified to > 99%, as described in **2.2 Synthesis**. Compared with 8FS(EO)₂, 8FG(EO)₂ has an extra –CH₂– spacer between the fluorocarbon chain and sulfonate group, and it would bring in a lower L/B ratio and a larger CPP. The surfactant molecular structures and their properties in water are summarized in Table 1[12-13].

Ultrapure water of 18.2 M Ω cm resistivity was taken from a Milipore Milli-Q Plus system and used for the experiments. CO₂ of 99.99% purity (Ekika Carbon Dioxide Co. Ltd.) and methyl orange (Acros Organics) were used without further treatment. Methyl orange (MO) was purchased from Acros organics and was used directly without further treatment.

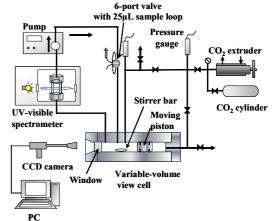
Surfactant structure	Surfactant	n	Krafft point (°C)	CMC ^a (mol/ <i>l</i>)	γ _{СМС} ^ь (mN/m)
$ \begin{array}{c} O \\ H \\ F(CF_2)_8 CH_2 CH_2 O - C - (CH_2)_n \end{array} $	8FS(EO) ₂	1	73	2.7 x 10 ⁻⁴	20
F(CF ₂) ₈ CH ₂ CH ₂ O–C–CHSO ₃ Na	8FG(EO) ₂	2	_	4.8 x 10 ⁻⁴	14

Table 1 Surfactant structures and their properties in water.

^a Critical micelle concentration in water at 75°C. ^b Surface tension at CMC at 75°C.

2.2 SYNTHESIS

Synthesis of Bis(1H,1H,2H,2H-heptadecafluorodecyl) Glutaconate: A mixture of 1H,1H,2H,2H-heptadecafluoro-1-decanol 30.0g (64.6 mmol), glutaconic acid 4.3 g (33.1 mmol), *p*-toluene sulfonic acid monohydrate 1.2 g (6.3 mmol) as a catalyst in 120 cm³ toluene was refluxed under stirring at 110 °C for 24h. During the reaction, the water liberated was removed azeotropically from the reaction system to shift the equilibrium of the esterification reaction. After the reaction, to the residue was added 60 cm³ ethyl acetate, and the mixture was washed sufficiently with brine to remove *p*-toluene sulfonic acid and excess glutaconic acid, and dried over Na₂SO₄. After the removal of the drying agent, toluene, ethyl acetate and 1H,1H,2H,2H-heptadecafluoro-1-decanol (bp. 113 °C at 10 mmHg) in the mixture were evaporated under vacuum. Recrystallization from ethanol gave a white solid, bis(1H,1H,2H,2H-heptadecafluorodecyl) glutaconate (yield 16.3 g, 49%); mp 72.2-73.0 °C; ¹H-NMR (400MHz, solvent CDCl₃, standard TMS) $\delta_{\rm H}$ /ppm: 2.4-2.6 (a, m(multiplet), 4H), 3.2-3.4 (c, t(triplet), 4H), 4.4-4.5 (b, t, 4H), 5.9-6.0 (e, d(doublet), 1H), 7.0-7.1 (d, m, 1H) for $C_8F_{17}CH_2^aCH_2^bOCOCH_2^cCH^d = CH^eCOOCH_2^bCH_2^aC_8F_{17}$; IR (KBr) v_{max} /cm⁻¹; 1739, 1723, 1661, 1398, 1344, 1275, 1248, 1204, 1148, 1135, 1117, 1062, 1004, 957, 938, 658, 514; Elemental analysis for C₂₅H₁₂O₄F₃₄: Found C, 29.4; H, 1.2. Calcd C, 29.4, H, 1.2.


Synthesis of sodium bis(1H,1H,2H,2H)-heptadecafluorodecyl)-2-sulfoglutaconate, $8FG(EO)_2$: The diester (16.3g, 15.9 mmol) was dissolved in 1,4-dioxane (265 cm³); then the

mixture was heated to 50 °C. To the mixture was added a solution of sodum hydrogensulfite (6.5 g, 6.25 mmol) in water (110 cm³). The reaction mixture was stirred under reflux at 120 h. The white solid product precipitated was separated from the reaction mixture by filtration, and washed with 1,4-dioxane to remove the unreacted diester. The product was extracted by Soxhlet with acetone to remove excess NaHSO₃, and recrystallized from acetone. A white powder, 8FG(EO)₂, was obtained after vacuum drying (yield 0.63 g, 10%); ; ¹H-NMR (400MHz, solvent CF3COOD, standard TMS) $\delta_{\rm H}$ /ppm: 2.6-2.7 (a, m, 4H), 2.9-3.1 (d, m, 2H), 3.2-3.4 (c, m, 2H), 3.2-3.4 (d, m, 2H), 4.2-4.4 (e, m, 1H), 4.6-4.7 (b, t, 4H) for C₈F₁₇CH₂^aCH₂^bOCOCH₂^cCH₂^dCH^e(SO₃Na)COOCH₂^bCH₂^aC₈F₁₇; IR (KBr) v_{max}/cm⁻¹; 3610, 3115, 1739, 1237, 1204, 1136, 1118, 1062,705, 659; Elemental analysis for C₂₅H₁₃O₇F₃₄Na: Found C, 26.7; H, 1.2. S, 2.9 Calcd C, 26.6, H, 1.2., S, 2.8.

2.3 APPARATUS AND MEASUREMENTS

Figure 1 is a schematic representation of the experimental apparatus. A high-pressure vessel with an optical window and a moving piston inside the vessel was used to observe the changes in the phase with varying pressure and temperature but constant composition. A detailed description of the experimental apparatus and procedures of the measurements can be found in the literatures [2-11].

In order to examine the solution properties of the aqueous core in an $8FS(EO)_2/W/scCO_2 \mu E$, UV-visible absorption spectrum measurements were carried out using MO, a double-beam

Fig. 1 Schematic representation of experimental apparatus.

spectrometer (Hitachi High-Technologies, Co., U-2810), and a quartz window cell (volume: 1.5 cm³), which was connected to the experimental apparatus. The quartz window cell was made of stainless steel (SUS316) and had three 8-mm-thick quartz windows. Each window had an i.d. of 10 mm; the windows were positioned so as to provide a perpendicular 10-mm optical path. Each window was attached to the stainless steel body of the cell using PTFE kel-F packing. The windows were tightly screwed to the steel body thereby compressing the packing between the stainless steel parts and the sapphire window and providing excellent sealing. The sealing was tested for up to 400 bar. The temperature of the quartz window cell was controlled by circulating water in a thermostat. Using spectroscopic measurements, the absorption spectra of the quartz window cell were compared with those of a standard quartz cell for an aqueous MO solution at ambient pressure; it was observed that both the spectra were in good agreement with each other.

The measurements of the water/surfactant/scCO₂ system were carried out at temperatures ranging from 35 to 75°C, with CO₂ densities of 0.70 to 0.85 g/cm³. The W_0^c parameter is generally used to express a water-to-surfactant molar ratio in a reversed micelle in scCO₂. The solubility of water in scCO₂ is taken into account as [2-11]:

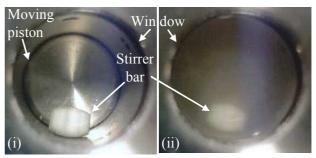
$$W_0^c = \frac{[\text{water}]_0 - [\text{water}]_S}{[\text{surfactant}]_0}$$

(1)

where $[water]_0$ is the number of moles of water in the system, $[water]_S$ is the number of moles of water that are soluble in a given amount of pure CO₂, and $[surfactant]_0$ is the number of moles of surfactant in the system. Predetermined amounts of 8FS(EO)₂ and CO₂, where the molar ratio of 8FG(EO)₂ to CO₂, $R_{S/C}$, was fixed at 8 × 10⁻⁴, were loaded in a variable-volume high-pressure optical cell. Then, water or an aqueous MO solution (0.1 wt%) was added into the optical cell through a six-port valve until the clear Winsor-IV W/scCO₂ μ E (IV μ E) solution became a turbid macroemulsion (E) solution or a precipitated hydrated surfactant. The value of W_0^c was determined for each temperature and CO₂ density. The value of [water]_s was obtained from literature data [11]. The densities of CO₂ were calculated using Span-Wagner EOS [14].

During the spectroscopic measurement, the $scCO_2$ mixture was stirred and circulated between the optical vessel and the quartz window cell until the absorbance became constant. The circulation was then stopped, and the valves between the vessel and quartz window cell were closed and the measurement was performed. The physical properties of the continuous phase of $scCO_2$ were assumed to be equivalent to those of pure CO_2 .

3. RESULTS


Figure 2 shows the appearances of various $8FG(EO)_2/W/scCO_2$ mixtures. Fig. 2 (i) displays the transparent single-phase having added amount of water larger than the solubility in $scCO_2$, and suggests the formation of the Winsor-IV $W/scCO_2 \mu E$. Fig. 2 (ii) is a photograph of the turbid macroemulsion when the phase transition from $IV\mu E$ to E occurred due to the

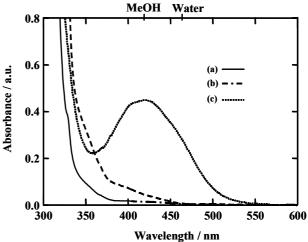
decrease in pressure and CO_2 density. The phase transition was the result of promoted aggregation and fusion due to decreased CO_2 density. It was observed that when the stirring of the mixture stopped, creaming of the turbid macroemulsion occurred, resulting in the formation of a $2\emptyset$.

Swelling of aqueous cores in Winsor-IV W/scCO₂ μ E was examined by the absorbance of MO. It was found that as the local environment of the spectroscopic probe became more polar, the absorbance maximum λ_{max} shifted to longer wavelengths [9,10]. **Figure 3** shows the photograph of the 8FG(EO)₂/scCO₂ solution with aqueous MO in the quartz window cell. Transparent appearance of the dyed scCO₂ phase visualized the letters " μ E" written on a paper, which confirms the formation of the IV μ E.

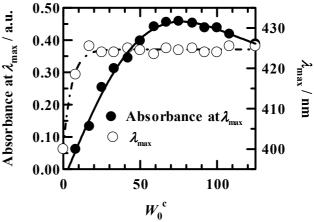
Figure 4 shows the UV-visible absorption spectra of 17, 300 bar, and 45 °C. several MO/scCO₂ mixtures and also the benchmarks for the λ_{max} values of surfactant-free solvents, including methanol (421 nm) and water (464 nm) [9,10]. It can be observed that the absorption spectrum of MO in pure scCO₂ showed a discernible shoulder at 329 nm (**Fig. 4**, (a)). This shoulder was identified as the absorbance of MO that is slightly soluble in pure scCO₂. Similar to spectrum (a), the spectrum of MO soluble in scCO₂ saturated by water (**Fig. 4**, (b)) showed no significant peak between 350 and 600 nm. On the other hand, when MO was dissolved in a W/scCO₂ µE, a broad peak appeared at 360–520 nm, and λ_{max} was at 425 nm (**Fig. 4**, (c)). This result suggests that MO in a W/scCO₂ µE dissolved in a methanol-like environment and not in a water-like environment, which indicates that most MO molecules located at µE surface not in bulk-like free water in aqueous µE core.

The Winsor-IV μE became reddish with the increase in the W_0^c value of the aqueous MO solution. In order to examine the effect of W_0^c on μE in detail, the UV-visible absorption spectra of MO in water/8FG(EO)₂/CO₂ mixtures were measured for different values of W_0^c at 45 °C and 300 bar. The changes in λ_{max} and the absorbance as a function of W_0^c were shown in **Fig. 5**. It can be observed the absorbance of λ_{max} linearly increased with an increase in W_0^c

Fig. 2 Photographs of the $8FG(EO)_2/W/scCO_2$ mixture at different pressures. (i) Winsor IV $W/scCO_2 \mu E$, (ii) $W/scCO_2$ macroemulsion



Quartz window


Fig. 3 Photographs of Winsor-IV W/scCO₂ μ E with 8FG(EO)₂ and MO in the quartz window cell at W_0° of 17, 300 bar, and 45 °C.

until $W_0^{\rm c}$ reached to 60. These results that $8FG(EO)_2$ suggest could microemulsify with W_0^{c} up to 60, and the μE swelled with an increase in W_0^{c} . Since the maximum $W_0^{\rm c}$ value of 60 was larger than that of the $8FS(EO)_2$ microemulsion, the addition of methylene spacer into the $8FS(EO)_2$ sulfosuccinate group presumably decreased L/B ratio and/or increased CPP. At $W_0^c < 20$, the λ_{max} shifted to longer wavelength with a larger $W_0^{\rm c}$. It means that, with increasing $W_0^{\rm c}$, MO most likely dissolved in a water-like environment, namely, bulk-like free water in aqueous cores. In a typical W/O µE system with $W_0^{c} > 15$ [15], the increase in the amount of bulk-like free water is greater than that in the amount of water at W/O μE surface. For this reason, when Winsor-IV W/scCO₂ µE was used, the amount of bulk-like free water became greater than that of surface water with an increase in $W_0^{\rm c}$. Further, some MO molecules were presumably transferred from surface water to free water. resulting in greater λ_{max} .

At W_0^c from 60 to 80, λ_{max} and the absorbance were almost constant in spite of different W_0^c values, which imply the formation of Winsor-II W/scCO₂ µE (W/scCO₂ microemulsion having separated excess water). This suggests that although W_0^c increased in this system, (i) the Winsor-II W/scCO₂ µE continued to exist without the formation of

Fig. 4 UV-visible absorption spectra of MO in (a) pure scCO₂, (b) scCO₂ phases saturated by water, and (c) the Winsor-IV 8FG(EO)₂/W/scCO₂ μ E with $W_0^c = 42$. The mixtures of spectra (a) and (b) were without 8FS(EO)₂. The experimental pressure, temperature, and CO₂ density were 300 bar, 45 °C, and 0.890 g/cm³, respectively.

Fig. 5 Change in λ_{max} and the absorbance of MO in the 8FG(EO)₂/W/scCO₂ mixture as a function of W_0^{c} at 300 bar and 45 °C.

the LC, (ii) the water-to-surfactant molar ratio of reversed micelles encapsulating an aqueous core was constant at 60, and (iii) separated excess water increased by an amount equal to $(W_0^{\rm c} - 60)$.

When W_0^c became > 80, the absorbance slightly decreased with increasing W_0^c , though λ_{max} was constant at 425 nm. From the stand point of a white precipitate appearing at $W_0^c > 100$, W/scCO₂ µE would gradually transferred to the precipitate phase with increasing W_0^c .

CONCLUSION

To develop an efficient surfactant for W/scCO₂ μ E, we synthesized a fluorinated double-tail anionic surfactant 8FG(EO)₂, which is an analogue of the good W/scCO₂ type microemulsifer 8FS(EO)₂ but has one more methylene spacer in hydrophilic group than 8FG(EO)₂. The phase behavior measurement found 8FG(EO)₂/water/scCO₂ mixtures to form a transparent single-phase Winsor-IV W/scCO₂ μ E, a two-phase Winsor-II W/scCO₂ μ E, a turbid W/scCO₂ macroemulsion, and liquid crystal like precipitate. To reveal the

microemulsifying power, i.e., the maximum number of water molecules that can be microemulsified by one surfactant molecule, W_0^c , UV-visible absorption spectra of MO in 8FG(EO)₂/W/scCO₂ mixture were measured at several W_0^c values. Interestingly, as loading aqueous MO solution in 8FG(EO)₂/scCO₂ solution at 45 °C and 300 bar, the appearance of the mixture kept a transparent single-phase and the absorbance of MO increased until W_0^c become 60. These results suggest that 8FG(EO)₂ could microemulsify water in scCO₂ at least W_0^c up to 60, which was larger than that of 8FS(EO)₂. Then, the added methylene spacer of 8FG(EO)₂ was expected to stabilize W/scCO₂ µE formation with a larger CPP and/or a lower L/B ratio than those of 8FS(EO)₂.

ACKNOWLEDGEMENT

This work was supported by the TEPCO Research Foundation, SEPT Research Foundation, Foundation of the Promotion of International Scientific Research, Iketani Science and Technology Foundation, a Grant for Priority Research Designated by the President of Hirosaki University, and Foundation of the Association for the Progress of New Chemistry.

REFERENCES:

[1] O'SHEA, K. E., KIRMSE, K. M., FOX, M. A.; JOHNSTON, K. P., J. Phys. Chem., Vol. 95, **1991**, p.7863

[2] SAGISAKA, M., YODA, S. TAKEBAYASHI, Y., OTAKE, K. KITIYANAN, B., KONDO, Y.; YOSHINO, N., TAKEBAYASHI, K., SAKAI, H., ABE, M., Langmuir, Vol. 19, **2003**, p. 220

[3] SAGISAKA, M.; OZAKI, Y.; YODA, S.; TAKEBAYASHI, Y., OTAKE, K., KONDO, Y., YOSHINO, N., SAKAI, H., ABE, M., Mater. Technol., Vol. 21, **2003**, p. 36

[4] SAGISAKA, M., YODA, S., TAKEBAYASHI, Y., OTAKE, K., KONDO, Y., YOSHINO, N., SAKAI, H., ABE, M., Langmuir, Vol. 19, **2003**, p. 8161

[5] SAGISAKA, M., FUJII, T. OZAKI, Y., YODA, S., TAKEBAYASHI, Y., KONDO, Y., YOSHINO, N., SAKAI, H., ABE, M., OTAKE, K., Langmuir, Vol. 20, **2004**, p. 2560

[6] SAGISAKA, M., FUJII, T., KOIKE, D., YODA, S., TAKEBAYASHI, Y., FURUYA, T., YOSHIZAWA, A., SAKAI, H., ABE, M., OTAKE, K., Langmuir, Vol. 23, **2007**, p. 2369

[7] SAGISAKA, M.; KOIKE, D.; YODA, S., TAKEBAYASHI, Y., FURUYA, T., YOSHIZAWA, A., SAKAI, H., ABE, M., OTAKE, K., Langmuir, Vol. 23, **2007**, p. 8784

[8] SAGISAKA, M., KOIKE, D., MASHIMO, Y., YODA, S., TAKEBAYASHI, Y., FURUYA, T., YOSHIZAWA, A., SAKAI, H., ABE, M., OTAKE, K., Langmuir, Vol. 24, **2008**, p. 1016

[9] SAGISAKA, M.; HINO, M., SAKAI, H., ABE, M., YOSHIZAWA, A., J. Jpn. Soc. Colour Mater., Vol. 81, **2008**, p. 331

[10] SAGISAKA, M., HINO, M., OASA, J., YAMAMOTO, M., YODA, S., TAKEBAYASHI, Y., FURUYA, T., YOSHIZAWA, A., OCHI, K., OTAKE, K., J. Oleo Sci., Vol. 58, **2009**, p. 75

[11] TAKEBAYASHI, Y., MASHIMO, Y., KOIKE, D., YODA, S., FURUYA, T., SAGISAKA, M., OTAKE, K., SAKAI, H., ABE, M., J. Phys., Chem. B, Vol. 112, **2008**, p. 8943

[12] ABE, M., KONDO, Y., SAGISAKA, M., HIDEKI, S., MORITA, Y., KAISE, T., YOSHINO, N. J. Jpn. Soc. Colour Mater., Vol. 73, **2000**, p. 53

[13] SAGISAKA, M., ITO, A., KONDO, Y., YOSHINO, N., KWON, K. O., SAKAI, H., ABE, M., Colloids and Surf., A, Vol. 185, **2001**, p. 749

[14] SPAN, R., WAHNER, W., J. Phys. Chem. Ref. Data, Vol. 25, 1996, p. 1509

[15] ZHOU, G.-W., LI, G.-Z., CHEN, W.-J., Langmuir, Vol. 18, 2002, p. 4566