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For decades the behavior of Tolman's length (a curvature-correction coefficient in the surface 
tension) has remained one of the most controversial issues in mesoscopic thermodynamics of 
fluids. It was commonly believed that Tolman’s length played no significant role in practice. 
However, it has been recently shown that Tolman's length strongly diverges at the critical 
point of fluids; the amplitude of this divergence depends on the degree of asymmetry in fluid 
phase coexistence. In this paper we consider a curvature dependence of the interfacial tension 
in polymer solutions. We show that Tolman’s length in asymmetric polymer systems may 
become as large as the thickness of the interface, thus playing a significant role in behavior of 
micro droplets and flow of polymer fluids in porous media.  
 
 INTRODUCTION 

 
Surface tension is the most important physical property for a large number of processes 

in petroleum and chemical engineering, including nucleation and cluster formation, filtration 
through porous media, wetting and drying, etc. In the Gibbs theory of nucleation, the kinetic 
barrier is proportional to the third power of the surface tension.  The surface tension of a 
curved interface is different from that of a planar interface, a fact recognized by theoretical 
scientists but commonly ignored in practice.  A significant curvature-dependence of the surface 
tension would affect the description of nucleation phenomena and our understanding of the 
behavior of fluids in microcapillaries or nanopores.  The rationale for neglecting the curvature 
dependence of the surface tension is twofold. First, some theoretical studies on Tolman’s 
length often contradict each other and appear unconvincing. As a result, the curvature-
dependence of the surface tension has remained one of the most controversial issues in 
mesoscopic thermodynamics for decades. Second, the predicted effects obtained by mean-field 
approaches are commonly believed to be very small, even for nanosized droplets.  

 The curvature correction to the surface tension was first introduced by Tolman 
[1]. A key parameter in Tolman’s work is the distance between the equimolar dividing surface 
and the surface of tension, known as “Tolman’s length.” Tolman’s length (δ) is defined as a 
curvature-correction coefficient in the surface tension (σ) of a liquid or vapor droplet: 
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,                          (1) 

where R is the droplet radius, taken equal to the radius of the surface of tension, and σ∞ is the 
surface tension for the planar interface.  

The sign and the value of the correction is a subject of prolonged debate [2-9]. The 
controversy is even more seen when considering the behavior of Tolman’s length for a smooth 
interface near the critical point. While square-gradient theories gave consistent results in mean-
field approximation [6], the actual near-critical behavior of Tolman's length, affected by critical 
fluctuations, has not been not certain, either in sign or behavior.  These studies vary greatly, 
predicting that at the critical point δ  is either finite, logarithmically divergent, or algebraically 
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divergent with different exponents [4-9]. It has been recognized that the difference between the 
equimolar surface and the surface of tension is phenomenologically associated with asymmetry 
in fluid phase coexistence [4,6,8]. In symmetric systems, such as the lattice-gas model and the 
regular-solution model, the difference between the equimolar surface and the surface of tension 
vanishes; therefore Tolman’s length does not exist. Based on scaling arguments, Rowlinson [8] 
and Fisher and Wortis [9] predicted a very weak algebraic divergence of Tolman’s length at the 
critical point with an exponent −0.065. Since the latter prediction was supported by an exact 
result obtained for the Widom-Rowlinson "penetrable-sphere model" [10], it became 
commonly accepted.  

More recently, it has been shown that a proper treatment of asymmetry in fluid phase 
behavior, known as “complete scaling” [11], yields a much stronger algebraic divergence of 
Tolman’s length at the critical point than previously believed, with an exponent −0.304. This is 
purely a fluctuation-induced effect which does not exist in any mean-field model, and its 
amplitude depends on the degree of asymmetry in fluid phase behavior. This result suggests 
that in highly asymmetric fluids and fluid mixtures, this divergence may significantly affect 
interfacial behavior. 

    
SMOOTH INTERFACE AND TOLMAN’S LENGTH IN POLYMER SOLUTIONS 

   
Smooth interfaces are ubiquitous in soft matter. Examples include near-critical vapor-

liquid and liquid-liquid interfaces in simple and complex fluids, interfaces in polymer solutions 
and polymer blends, liquid membranes and vesicles. A smooth, near-critical interface is 
characterized by the interfacial density/concentration profile with a characteristic length scale, 
or “thickness” of the interface, assumed to be directly proportional to the correlation length ξ  

[12]. Such interfaces are mesoscopic, extending 
from nanometers to microns; however, the droplet 
size cannot be smaller than the thickness of its 
interface. Simulation of a smooth interface (by 
using toolboxes in MATLAB developed in ref.  
[13]) of a fluid droplet near the critical point is 
presented in Fig. 1. Specifically, a polymer-rich 
droplet ( 200 nmR ≈ ) in a solution of polystyrene 
(with a degree of polymerization 32 10N ≈ ⋅ ) in 
cyclohexane, near the critical point of liquid-liquid 
separation  ( c 296KT ≈ ) [14] at  c 1.3KT T− ≈ , 
would appear simlar to the image shown in Fig. 1 
with the thickness of the interface 2 40 nmξ ≈ . The 
surface tension of smooth interfaces is usually very 
low, vanishing at the critical point; hence the 
interface undergoes strong  fluctuations.  

What would be the curvature effect for such 
an interface?  A recent study [15] shows that there 
are two key elements that determine the correction 
to the surface tension of a smooth interface. First, 
there is an intrinsic system-dependent fluid-phase 
asymmetry caused by specific intermolecular 
interactions. Second, there is a universal 

Figure 1. Simulation of a smooth interface for 
a droplet near the critical point of fluid-fluid 
separation. Intensity of shadowing indicates the 
value of the density/concentration gradient in 
the interfacial profile as predicted by 
renormalization-group theory [12]. The 
“thickness” of the interface, given by a 
characteristic decay-length of the profile, is 
indicated by 2ξ .   
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modification of this asymmetry by critical fluctuations.  Figure 2 schematically shows a typical 
asymmetric vapor-liquid phase diagram for fluids. Far away from the critical temperature, the 
mean of the vapor and liquid densities is represented in first approximation by a rectilinear 
diameter.  However, close to the critical point, the critical fluctuations modify not only the 
shape of the coexistence boundary, but also the mean of the densities, making it “singular,” 
with its temperature derivative diverging at the critical point [11]. 

It was suggested in ref. [15] that a ratio of the “excess density” 
( ( )d c2/ρ ρ ρ ρ′′ ′∆ = + − ) and the difference between the densities of the coexisting phases 
( ρ ρ′′ ′− ) can be related to the ratio of Tolman length (δ ) and the thickness of interface ( 2ξ ) 
as  

d

2 '' '
ρδ

ξ ρ ρ
∆

= −
−

 .                  (2) 

Equation (2) unambiguously defines the 
sign of Tolman’s length as negative for liquid 
droplets and positive for bubbles, provided that 
the slope of the “diameter” of the coexistence is 
negative. Since in the mean-field regime the 
ratio ( ) d'' ' /ρ ρ ρ− ∆  and the thickness of the 
interface depend on temperature near the critical 
point in the same manner [12], the mean-field 
Tolman length in simple fluids remains finite 
and microscopic [6]. However, when modified 
by fluctuations, the excess density splits into 
two diverging terms: one associated with a 
coupling between fluctuations of density and 
molecular volume and the other with a coupling 
between density and entropy fluctuations [11]. 
As follows from refs. [11] and [15], 
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Here, effa  and effb  are “effectife” asymmetry coefficients specific to a particular system [11b], 

0ξ
−  is the correlation-length amplitude below the critical point, and 0B and 0A− are critical 

amplitudes.  The temperature variable is defined as ( )c c
ˆ /T T T T∆ ≡ − . The universal critical 

exponents are 0.109,  0.326 and 0.630α β ν≈ ≈ ≈ [11]. The amplitudes of the divergence are 
system-dependent and may be evaluated from a mean-field equation of state. The second term 
in Eq. (4) diverges weakly and algebraically as a function of T̂∆  with an exponent −0.065, a 
result well known from earlier studies [8,9]. The first term is new and diverges more strongly, 
with an exponent −0.304; it can be shown to be the only effect of practical significance for 
polymer solutions.  It has not been proven that Eq. (2) is a rigorous thermodynamic relation, 
although it appears to satisfy both asymptotic scaling and mean-field regimes. However, this 
new relation provides a practical tool for evaluating Tolman's length from phase-coexistence 
data, even far beyond the critical region, where Eq. (4) is no longer valid. 

cρ ''ρ

T 

'ρ

' ''ρ ρ−

dρ∆

C

Figure 2. Schematic phase diagram for a fluid 
with asymmetric vapor-liquid coexistence 
showing singular diameter (dotted line) and 
mean-field extrapolation of rectilinear diameter 
(long dashed line). 
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 A polymer solution is a remarkable example of a highly asymmetric fluid coexistence.  
A typical phase diagram of a polymer solution is shown in Fig. 3. In the “critical regime where 

1/ 21
2

ˆ 1x N T≡ ∆ <<  [16], the coexistence is described by Eq. (3) with the volume fraction φ  

replacing the density ρ  and with ( ) 2
0 3 2 /B / N β≈ [17].  In the “polymer” regime 

where 1x >> , ( )3/ 2 xφ ≈  [16,17]. We adopt a simple interpolation for crossover between these 
two regimes: 

( )1
c

3 1
2 2

x x ββφ φ
φ

−′′ ′−
≈ +  .         (5) 

Equation (2) can be generalized for 
polymer solutions as  

2
d

'' '
φδ

ξ φ φ
∆

≈ −
−

 , (6) 

which behaves very differently in “critical” 
and “polymer” regimes.   We will now 
consider a droplet of polymer-rich phase, 
with concentration φ′′ , in a solution with 
concentration φ′ . Simple scaling 
arguments suggest that in the “critical” 
regime, Tolman’s length should diverge 
when ˆ 0T∆ → , in the same manner as in 
simple fluids but with an N-dependent 
amplitude, whereas in the “polymer” 
regime, Tolman’s length and the thickness 
of the interface should not depend on N. 

Consider, first, the critical regime. In 
this regime, all critical amplitudes depend on 
the degree of polymerization.  The 
asymmetry coefficient effa , as evaluated 
from the Flory-Huggins model by the 
method developed in ref. [11b], quickly 

reaches a finite value of 3/5 in the limit N →∞ . Thus, one obtains from Eq. (6) by accounting 
for the leading term in dφ∆  from Eq. (3a) and using Eq. (3b) for '' 'φ φ− : 

xβδ
ξ
≈ −  . (7) 

As first shown by de Gennes [18] and confirmed by experiment [14], the correlation 
length  in the critical regime scales with N as  

( )(1 ) / 2 1/ 2
0 0

ˆ ˆ ˆ
g gT r N T R N T R x

νν νν νξ ξ
−− −− − −≈ ∆ ≈ ∆ ≈ ∆ = ,                   (8) 

where 1/ 2
0gR r N≈ is the radius of gyration for an ideal (random-walk) polymer chain with 0r  

being of the order of monomer size. Therefore, since 0.326 and 0.63β ν≈ ≈ , Tolman’s length 
in the “critical” regime behaves as 

Figure 3. Asymmetric coexistence curve for a 
polymer solution with a degree of polymerization N = 
104 near the critical point as follows from Flory theory 
modified by critical fluctuations [17]. The solid line 
represents the phase separation curve interpolated 
between the critical regime and theta-point regime by
Eq.(7). The dashed line represents the Flory-Huggins 
phase behavior at an infinite degree of polymerization 
[16,17].  
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0.3040.348
0

ˆ
gR x r N Tβ νδ

−−≈ − ≈ − ∆ .  (9) 

In the “polymer” regime, when x →∞  since N →∞  at any given T̂∆ , similar 
arguments [19,20] yield  

1

0
ˆ2gR

r T
x

ξ
−

≈ → ∆ . (10) 

In this regime, all properties are independent of the degree of polymerization (since N →∞ ) 
and, as obvious from Fig. 3, the ratio ( )d /φ φ φ′′ ′∆ −  approaches 1/2.  Therefore, 

1δ
ξ
≈ −   (11) 

and 
1

gR xδ −≈ − .     (12) 

In the mean-field approximation ( )1/ 2β ν= = in the “critical” regime, as follows from 

Eq. (9), Tolman’s length does not depend on temperature ( )gRδ ≈ − , while in the “polymer” 
regime, which is proven to be mean-field-like [14,19,20], it remains 
unchanged ( )1

0
ˆ2r Tδ ξ −≈ − ≈ − ∆ .  

Crossover between the “critical” and “polymer” regimes for the thickness of the 
interface can be approximated by a simple interpolation as 

 
( )11

gR x

x

ν

νξ
−

−≈
+

 ,    (13)  

( )1
x

x

β

β

δ
ξ
≈ −

+
 ,    (14) 

Figure 4. Universal behavior of dimensionless 
Tolman’s length with respect to degree of 
polymerization and temperature distance to phase 
separation for a polymer-rich droplet, calculated 
with Eq. (15). 

Figure 5.   Dimensionless Tolman’s length 
exhibiting crossover between the “critical” and 
“polymer” regimes for a polymer-rich droplet 
with N = 104, calculated with Eq. (15).   
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gR x

x

β ν

β νδ
−

+ −≈ −
+

.    (15) 

Figure 4 shows the universal Tolman’s length behavior predicted for polymer solutions 
calculated from the crossover expression (15).  For 0 0.1 nmr ≈ , the Tolman length reaches 50 

nm at 4 4ˆ 10  and 10T N−∆ = = . Figure 5 illustrates the crossover temperature dependence of 

Tolman’s length between “critical” and “polymer” regimes. 
 

CONCLUSIONS 
 
The curvature effects on the surface tension in polymer solutions are significant: the 

Tolman length becomes mesoscopic, diverging with N →∞  and ˆ 0T∆ → . In particular, in the 
“polymer” regime ( N →∞ ), Tolman’s length is predicted to be as large as half of the 
thickness of the interface. A similar effect is expected in asymmetric polymer blends with a 
large degree-of-polymerization ratio.  
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