FEASIBILITY OF SUPPORTED IONIC LIQUIDS AS CO₂-SELECTIVE NANOPOROUS MEMBRANES

Sona Raeissi¹, Wim G. Haije², Cor J. Peters^{3,*}

¹Department of Chemical and Petroleum Engineering School of Engineering, Shiraz University Shiraz 71345, Iran ²Energy research Centre of the Netherlands PO Box 1, 1755 ZG Petten, The Netherlands ³Delft University of Technology, Faculty of Applied Sciences Physical Chemistry and Molecular Thermodynamics Julianalaan 136, 2628 BL Delft, The Netherlands C.J.Peters@tudelft.nl

Abstract

Nowadays, it is generally accepted that anthropogenic carbon dioxide emissions are the major cause for global temperature rise, the so-called greenhouse effect. In particular the application of fossil fuels for power generation and its use in the automotive sector leads to unacceptably high emissions of CO_2 into the atmosphere. As a consequence, extensive research programs on carbon, capture and storage (CCS) of CO_2 have been initiated to develop knowledge and technology to control and to reduce these emissions. A major issue is to have adequate capture technology available to separate CO_2 from all kind of industrial gas streams before it can safely be stored in the underground. Examples of such industrial processes, releasing large amounts of CO_2 , are the well-known steam reforming and water gas shift reactions with natural gas (CH₄) yielding H₂ and CO₂.

In this presentation a novel approach to separate CO_2 from the product stream will be presented. For that purpose a meso porous membrane support, in which an ionic liquid has been confined, is used to separate CO_2 and H_2 . Key parameters are selective dissolution in and fast transport through the IL for only CO_2 . Extensive experimental work has been performed to select the appropriate ionic liquid for this application. In addition, solubility measurements of CO_2 , H_2 , CH_4 and CO in the selected ionic liquid have been performed. It will be shown that this technique is a promising approach for capturing CO_2 from industrial gas streams.

This research is financially supported by the Global Climate & Energy Program (GCEP), a project coordinated by Stanford University (USA).