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In our presentation we will discuss the problem of electrical conduction through 
supercritical microemulsions, expostulating upon various computer simulation and 
theoretical results from our group’s recent research into this problem. We will 
describe how the Ising model paradigm is used to generate structure dynamics that 
represent the microscopic dynamic behavior of the supercritical fluid microemulsion 
mixtures.  

Our simulation results show that the approach taken yields critical exponents, for the 
solute transport coefficients, that are consistent with the only other published 
simulation that we are aware of. In addition, we find good agreement with 
experimental data for conductivity coefficients taken in supercritical microemulsions 
near their percolation transition. We also present a general scaling analysis for this 
system which appears to capture universal behavior, both at the random percolation 
limit as well as at finite Temperatures.  

The talk will attempt to show that this computational/theoretical approach has the 
potential for being very useful for studying fundamental phenomena related to 
engineering problems involving transport in systems showing nanoscale dynamic 
disorder.  
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INTRODUCTION 
We study the problem of diffusion through network structures exhibiting 

dynamic disorder, using the Ising model paradigm to generate evolving network 
configurations. Diffusion is studied using blind random walkers (RW). Furthermore, 
we partitioned the net displacement of the RWs throughout the network into two 
terms. These represent the contributions of  transport  through neighboring conducting 
sites  and the self-diffusion of the site itself on which the RW finds itself at any given 
point in time. 
 

SIMULATION APPROACH 
Dynamic network structures were found with kinetic Monte Carlo (KMC) 

simulations, consistent with Kawasaki dynamics (i.e. constant conducting-site 
density) [1,2,3,4], on Ising lattice models [4,5] . At any point during the simulations 
conducting-site pathways (with densityφ ) are taken to be given by the network of up 
spins, using the Ising terminology, with the non-conducting-sites represented by the 
down spins. The thermodynamic properties of this system are well established in 

terms of the reduced Ising lattice temperature
cT

T , where T is the system temperature 

and in 2d, for example, 
B
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=  is the critical temperature in which is 

Boltzmann's constant and the spin (site)-spin (site) coupling parameter [6,7] . 
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Given a lattice of size  we pre-equilibrate the system by doing a number 
of Monte Carlo Steps (MCS), where a MCS consists of a complete sweep of spin 
exchanges, i.e.  updates. In addition to the ‘’usual’’ Ising parameters another 
feature of our simulation model is the ability to update only a fraction of the 
conducting sites during any step of the simulation. 
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 After pre-equilibration we perform the diffusion simulations as follows: a RW 
is placed on a randomly selected conducting site and one of its neighboring sites 
selected randomly. If the selected site is a conducting site the RW moves to it 
otherwise the RW remains fixed at its current position. The number of RW 
stepsattempted between consecutive structure updates is defined by the symbol  
and the fraction of conducting sites updated per lattice sweep by . Thus, the number 
of conducting sites updated each lattice sweep is . Furthermore, we define 
characteristic time constants for the RW and structure evolution dynamics by the 
variables 

wn
q

φ2qLN R =

wτ  and  respectively. It follows in straightforward fashion that T  

and  with  normalized to the value one. Therefore, T  represents the 
relative time scales of  structure and RW dynamics.     
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RESULTS 

We studied diffusion in various networks starting with a system at the random 
percolation limit. Some results are presented in figure 1 
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Figure 1  Diffusion behavior  in the network 
 
 

The results in figure 1 show three distinctive modalities: at short, intermediate and 
asymptotically long times. At short times we observe an increase in diffusion that 
quickly leads to a plateau region, during which time significant diffusion slow-down 
occurs where the RW appears to be trapped within its initial cluster, a phenomenon 
we refer to as cage trapping.  
 

The overall diffusion behavior seen in these figures is suggestive of a system 
in which a scaling analysis might play a useful role in collapsing the simulation data 
into a “universal” curve and in figure 2 we show results using the scaling equations 
given by Chen et al. [8]. The scaling results seem to capture the physics of diffusion 
in this system in a satisfactory way. 
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Figure 2 Scaling results for diffusion in the network.   
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CONCLUSIONS 
Our simulation model shows a rich variety of novel diffusion behavior showing three 
distinctive diffusion regions: short, intermediate and asymptotically long- time 
transport regimes. Based upon these observations we used previously postulated 
scaling functions for diffusion in this system which appeared to universalize the 
behavior, at both the random percolation limit as well as at finite temperatures (the 
correlated problem).  This first study suggest that the computer model presented here 
shows potential for being very useful for studying basic phenomena related to 
diffusion in correlated network structures like ion transport through supercritical 
microemulsions. 
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