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Abstract - Artificial neural networks (ANN) are applied to literature data in order to develop and 
validate a model that can predict the solubility of four non-steroidal anti-inflammatory drugs 
(flurbiprofen, ibuprofen, ketoprofen and naproxen) in supercritical carbon dioxide (scCO2). A 
multilayer feedforward backpropagation network is used with three hidden layers. The model has five 
inputs (two intensive state variables and three pure drug properties) and one output (solubility of solid 
drug in scCO2). The network is systematically trained with 96 data points in the temperature and 
pressure ranges (308.15-333.1K), (8-25 MPa) respectively and is validated with 47 data points. 
Different combinations of network architectures, training algorithms and learning parameters are 
attempted. The training and validation strategy is based on the use of a validation agreement vector, 
determined from linear regression analysis of the plots of the predicted versus experimental of the 
solubility of solid drug in scCO2, as a measure of the predictive ability of the ANN model. Statistical 
analysis of the predictability of the neural networks model shows excellent agreement with 
experimental data. Furthermore, the comparison in terms of average absolute relative deviation 
between the predicted results for each binary for the whole temperature range and literature results 
predicted by some cubic equation of state with various mixing rules shows that the ANN model gives 
comparable and even better results. In contrast to equation of state the ANN model does not 
necessitate the sublimation pressure and the molar volume of the solid solute. 
Keywords: Solubility; Artificial neural networks; Anti-inflammatory drugs; Supercritical Carbon 
dioxide. 
 
INTRODUCTION 

The pharmaceutical industry like many other process industries has witnessed over the last 
decades an increasing level of interest in supercritical fluid (SCF) technology. Conventional 
production processes of many drugs comprise a series of multiple separation and purification 
operations involving a series of organic solvent extraction and precipitation steps and finish with the 
recovery of large amount of organic solvents. Supercritical fluid technologies are considered as a 
promising alternative to replace conventional processes while environmentally benign, less energy 
intensive, more effectively controlling product specification and less costly. Supercritical carbon 
dioxide (ScCO2) can replace toxic and undesirable organic solvents which either require extensive 
solvent recovery units or remain in very small but still dangerous proportions. The most decisive and 
critical factor affecting the efficacy and the correspondent technical and economical success of most 
SCF processes is the accurate knowledge of the equilibrium solubility of the materials to be processed 
in the selected SCF solvent and/or the solubility of that SCF in those materials. Most commonly, the 
solubility of a solid in a SCF phase is correlated using empirical and semi-empirical models based on 
density of the SCF, pressure and temperature and equations of state (EoS)1. While extensive 
experimental data of solubility of biomolecules and pharmaceutical compounds in supercritical fluids 
are being published, attempts of modeling for the purpose of prediction, using EoS and empirical 
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models, are however still not satisfactory to the desired level of accuracy. Moreover, the large number 
of EoS and their mixing that exist in the literature, makes their use far from safe and easy.  On the 
other hand artificial neural networks (ANN), which can be viewed as universal approximation tool 
with an inherent ability to extract from experimental data the highly non linear and complex 
relationships between the variables of the problem handled, have gained broad attention within process 
engineering as a robust and efficient computational tool. As far as solubility and phase equilibria are 
concerned, Tabaraki et al.2 have used a wavelet NN to predict the solubility of azo dyes in scCO2 and 
Tabaraki et al.3 of 25 anthraquinone dyes in scCO2 at different conditions of temperature and pressure. 
Si-Moussa et al.4 have used a feedforward NN to predict high-pressure vapor liquid equilibrium of six 
CO2-ester binaries. In this work an attempt was made to estimate the solubility of four non-steroidal 
anti-inflammatory drugs (flurbiprofen, ibuprofen, ketoprofen and naproxen) in scCO2 using a single 
ANN predictive model. 

The experimental data reported by Stassi et al.5 for CO2-Ketoprophen, Ting et al.6 for CO2-
Naproxen, Charoenchaitrakool et al.7 for CO2-Ibuprophen and Duarte et al.8 for CO2-Flurbiprohpen 
systems, have been used for training and validation of the ANN model. The pure component 
properties of the four drugs used in this work are listed in Table 1. For flurbiprohen three data sets are 
used, as in the work of Coimbra et al.1, due to the different methods used to predict the critical 
properties and the acentric factor of flurbiprohen. The range of the intensive state variables and the 
number of data points for each binary are listed in Table 2. 

 
Table 1: Pure component properties used in this work. 

Component Tc (K) Pc (MPa) ω Reference 
Ketoprophen 1090.7 2.584 0.914 Coimbra et al.1 

Naproxen 807.0 2.452 0.904 Coimbra et al.1 
Ibuprophen 749.7 2.330 0.819 Coimbra et al.1 
Flurbiprophen (Set1) 987.0 2.500 0.933 Coimbra et al.1 
Flurbiprophen (Set2) 830.4 2.401 0.967 Coimbra et al.1 
Flurbiprophen (Set3) 830.4 2.401 0.671 Coimbra et al.1 

 
Table 2: Data source and range used for training and validation of the artificial neural network model. 

System T (K) P (MPa) 105.y2 N Reference 
313 9-25 0.39-9.15 7 Stassi et al.5 

CO2-Ketoprophen 
328 11-25 0.33-18.8 8 Stassi et al.5 

313.1 8.96-19.31 0.2-2.43 6 Ting et al.6 

323.1 10-19.31 0.19-2.91 6 Ting et al.6 CO2-Naproxen 
333.1 12.41-19.31 0.7-3.18 6 Ting et al.6 

308.15 8-22 5.3- 441 15 Charoenchaitrakool et al.7 

313.15 9.5-22 58.5- 649 6 Charoenchaitrakool et al.7 CO2-Ibuprophen 
318.15 8.5-17 3 - 584 8 Charoenchaitrakool et al.7 

303 8.9-24.5 2.17 – 8.337 11 Duarte et al.8 

313 9.8-24.4 1.672 - 14.95 9 Duarte et al.8 CO2- Flurbiprophen 
323 11.2-23.4 2.603 - 19.683 7 Duarte et al.8 

The whole data set 308.15-333.1 8-25 0.7 - 649 143  
 
 
SOLUBILITY MODELING WITH NEURAL NETWORK 

In order to describe the phase behavior of the four CO2(1)-NSAID(2) binaries by one ANN 
model a total of six variables have been selected in this work: three intensive state variables 
(equilibrium temperature, equilibrium pressure and the solubility of the solid drug in SCF phase) and 
three pure component properties of the NSAID (critical temperature, critical pressure and acentric 
factor). The equilibrium temperature (T), the equilibrium pressure (P) and the pure component 
properties of the solid drug ( Tc, Pc and ω)  have been selected as input variables and the mole fraction 
solubility  of the solid drug in the SCF phase as the output variable (Fig.1). 
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Figure 2: Multi-layer feedforward neural network for the prediction of the solubility of the solid drug 

in the SCF phase. 
 

The application of ANN modeling of the solubility of the four NSAID in csCO2 was performed 
using MATLAB® and the strategy proposed by Plumb et al.9 as follows: 

1. The experimental data should be divided into a training set, a test set (when attenuated training 
is adopted) and a validation set. Each data set should be well distributed throughout the model 
space. 

2. Initially, the model should be trained using the default training algorithm and network 
architecture. The parameters of the equation of the best fit (the slope and the y intercept of the 
linear regression) or the goodness of fit (correlation coefficient, R2) are determined for 
validation plots of the predicted versus the experimental properties of the validation data set. 
These parameters are used as a measure of the predictive ability of the model. Where the 
agreement vector values approach the ideal, i.e. [α=1 (slope), β=0 (y intercept), R2=1], little 
improvement in predictive ability is to be expected. The ANN model with the best agreement 
vector is retained and the procedure is stopped. 

3. Where the values of the parameters of the agreement vector vary greatly from the ideal and the 
model is poorly predictive, modification of the number of hidden layer neurons is then 
considered. 

4. If model performance remains unsatisfactory a systematic investigation of the effect of 
varying both the training algorithm and network architecture is required. 

All the input and output data were scaled so as to have a normal distribution with zero mean and 
unit standard deviation using the following scaling equation:  

Scaled value = (Actual value-µ)/ σ                                               (1) 

Where µ and σ: are the mean and standard deviations of the actual data respectively. The values 
of µ and σ for the input and output data, referred to in Table 1 and Table 2, are listed in Table 3. 

 
Table 3: Constants used for scaling and de-scaling of the data 

 T (K) P (MPa) Tc (K) Pc (MPa) ω log(y2) 
µ 303.15 8.00 749.70 2.33 0.6710 -5.72125 
σ 333.10 25.00 1090.70 2.584 0.9670 -2.16749 

 
Table 4: Structure of the optimized artificial neural networks model. 

Input layer Hidden layers Output layer  
Type of 
network 

 
Training Algorithm No. of neurons No. of 

neurons 
Activation 
function 

No. of 
neurones 

Activation 
function 

12 Logarithm 
sigmoid 

4 Logarithm 
sigmoid FFBP NN 

BRBP using 
Levenberg-Marquardt 

optimisation. 
5 

2 Logarithm 
sigmoid 

1 Linear 

 
 



RESULTS AND DISCUSSION 
The predictive ability assessment requires evaluation of data records excluded from the training 

set. Accordingly, the validation agreement vector and the validation agreement plot of the predicted 
versus the experimental outputs for the validation data set were used to evaluate the predictive ability 
of the NN model. The plot and the parameters of the linear regression are, straightforwardly, obtained 
using postreg MATLAB function. Figure 2 shows the validation agreement plot for the natural 
logarithm of the solubility with an agreement vector approaching the ideal, [α, β, R2] = [0.983,             
-0.0619, 0.996]. Table 5 shows the validation agreement vector and the commonly used deviations, 
calculated per binary for the training and validation data sets:  
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Figure 2: Validation agreement plot of the 
most predictive model of the solubility 

Figure 3: Experimental5,6,7,8 and NN predicted solubility results 
for the four systems at 313 K. 

 
The maximum of the Absolute Relative Deviation and the Absolute Deviation are those obtained 

for the solubility of Ibuprophen and are equal to 0.4207 and 0.4186.10-3 respectively. 
 

Table 5: Statistical analyses of the error of the predicted results for the training and validation phases 

 CO2 (1) -
Ketoprophen(2) 

CO2 (1) -
Naproxen(2) 

CO2 (1) -
Ibuprophen (2) 

CO2 (1) -
Flurbiprophen(2) 

(SET1) 

CO2 (1) -
Flurbiprophen(2) 

(SET2) 

CO2 (1) -
Flurbiprophen(2) 

(SET3) 
N 15 18 29 27 27 27 

AARDy2(%) 5.7877 3.2799 4.7872 5.7248 2.7202 3.2715 
MaxARDy2 0.3615 0.2064 0.4207 0.3807 0.1575 0.1920 
AADy2 (%) 0.0004 0.0001 0.0093 0.0004 0.0002 0.0003 

103.MaxADy2 0.0317 0.0028 0.4186 0.0208 0.0161 0.0153 
103.RMSEy2 0.0087 0.0011 0.1448 0.0067 0.0043 0.0046 

α y2 0.9692 1.0117 1.0072 0.9657 0.9796 0.9836 
104.β y2 0.0363 -0.0044 -0.2737 0.0364 0.0128 0.0083 

R2 y2 0.9886 0.9935 0.9972 0.9909 0.9963 0.9956 



Figure 3 shows a semi log plot of the mole fraction solubility of the solid drug in scCO2 (y2) 
versus pressure at 313 K for the four systems. The figure shows an excellent agreement between 
experimental solubility (shown as white face markers) and NN predicted solubility (shown as dark 
face markers). 

Tables 6-9 show a comparison between literature AARD(%) results, predicted by some cubic 
EoS, and those predicted by the ANN model of the present work. The deviations of the EoS 
predictions are very sensitive to the properties of the solid drug (critical properties, Pitzer’s acentric 
factor and sublimation pressure) and can be very high as pointed out by Coimbra et al.1. The 
deviations of the ANN model prediction, however, are not sensitive to the critical properties and 
globally lower. Furthermore, the ANN model does not necessitate the knowledge of the sublimation 
pressure and the solid molar volume. 
  

Table 6: Comparison between literature AARD(%) results predicted 
by some cubic EoS and the present work for the solubility of 
flurbiprophen 

 T(K) AARD(%) 
Set1 

AARD(%) 
Set2 

AARD(%) 
Set3 

303.15 2.32 1.81 1.84 
313.15 7.05 3.11 3.84 This work 
323.15 9.37 3.64 4.79 
303.15 6.61a 5.97a 5.49b 

313.15 15.01a 6.83c 5.16a Coimbra et al.1 
323.15 12.24c 6.46d 3.25d 

aPR EoS with vdW2 MR ; bSRK EoS with vdW2 MR; 
cPTV EoS with MPR MR; dPTV EoS with vdW2 MR 

Table 7: Comparison between literature 
AARD(%) results predicted by some cubic EoS 
and the present work for the solubility of 
naproxen 

 T(K) AARD(%) 
313.1  4.76 
323.1 1.37 This work 
333.1 3.70 

Coimbra et al.1 313.1  3.92a 

Ting et al.6 323.1 13.2b 

Ting et al.6 333.1 9.2b 

aPR EoS with vdW2 MR ;  
bSRK EoS with vdW1 MR ; 

 
 

Table 8: Comparison between literature AARD(%) results 
predicted by some cubic EoS and the present work for the 
solubility of ibuprophen 

 T(K) AARD(%) 
308.15 5.57 
313.15  1.58 This work 
328.15  5.72 

Charoenchaitrakool et al.7  308.15  12.6b 

Coimbra et al.1 313.15  4.21a 

Charoenchaitrakool et al.7 318.15  32b 

aPR EoS with vdW2 MR;  
bPR EoS with vdW1 MR 

Table 9: Comparison between literature AARD(%) 
results predicted by some cubic EoS and the present 
work for the solubility of ketoprophen 

 T(K) AARD(%) 
313 K 8.37 This work 328 K 3.53 

 Coimbra et al.1 313 K 8.30a 

aSRK EoS with vdW2 MR ; 
 

 
CONCLUSION 

A feed forward artificial neural network model has been used to predict the solubility of four 
NSAID in scCO2 given the equilibrium temperature, the equilibrium pressure and the critical 
temperature, the critical pressure and the acentric factor of the NSAID. The optimized NN consisted of 
five neurons in the input layer, three hidden layers with 14, 4 and 2 neurons respectively and one 
neuron in the output layer. This was obtained by applying a strategy based on assessing the parameters 
of the best fit of the validation agreement plots (slope and y intercept of the equation of the best fit and 
the correlation coefficient R2) for the validation data set as a measure of the predictive ability of the 
model. The statistical analysis shows that the model was able to yield quite satisfactorily estimates. 
Furthermore, the deviation in the prediction of the solubility is comparable if not lower than that 
obtained by cubic EoS of PR, SRK and PTV combining van der Waals (vdW), Panagiotopoulos-Reid 
(PPR), and Mukhopadhyay–Rao (MPR) mixing rules.  In contrast to EoS approach the ANN model 
does not rely on the sublimation pressure and the solid molar volume. Therefore, the ANN model can 
be reliably used to estimate the solubility of the four NSAID-scCO2 binaries within the ranges of 
temperature and pressure considered in this work. This study also shows that ANN models could be 



developed for the prediction of the solubility of a family NSAID in scCO2, provided reliable 
experimental data are available, to be used in supercritical fluid processes. Hence, at least for a non 
expert in selecting appropriate EoS for the application in hand, alternatives to EoS are offered to be 
used in a more reliably and less cumbersome way. 
 
NOMENCLATURE 
 

AAD Average Absolute Deviation P Equilibrium pressure (MPa) 
AARD Average Absolute Relative Deviation Pc Critical pressure (MPa) 
ANN Artificial Neural Networks PPR Panagiotopoulos Reid 

BRBP Bayesian Regularisation Back 
Propagation PR Peng Robinson 

EoS Equation Of State PTV Patel Teja Valderama 
FFBP Feed Forward Back Propagation R2 Correlation coefficient 
MaxAD Maximum of the Absolute Deviation RMSE Root Mean Square Error 

MaxARD Maximum of the Absolute Relative 
Deviation SRK Soave Redlich Kwong 

MPR Mukhopadhyay Rao T Equilibrium temperature (K) 
MR Mixing Rules Tc Critical Temperature (K) 
N Number of data points vdW Van der Waals 
NN Neural Networks y Mole fraction solubility 
Greek letters  
µ Mean σ Standard deviation 

α Slope of the linear regression 
equation ω Acentric factor 

β y intercept of the linear regression 
equation   

Subscripts  Superscripts 
1 Component 1 cal calculated 
2 Component 2 exp experimental 
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