NEW PHENYL-SUBSTITUTED POLYPHENYLENES WITH A NANOPOROUS STRUCTURE AND ULTRALOW DIELECTRIC CONSTANTS FORMED IN SUPERCRITICAL CARBON DIOXIDE

M. L. Keshtov, <u>E. E. Said-Galiev*</u>, S. S. Abramchuk and A. R. Khokhlov

A.N. Nesmeyanov Institute of Organoelement compounds of Russian Academy of Sciences, Vavilova Str. 119991 Moscow, Russia; E-mail: <u>ernest@ineos.ac.ru</u>, Fax: (+7)499-135-50-85

INTRODUCTION

In the context of the ever-increasing demand for design and miniaturization of microchips, development of polymers with ultralow dielectric constant in combination with high thermal and mechanical characteristics becomes of importance [1, 2]. Currently, fluorinated polyimides (dielectric constant k = 2.6-2.8) best meet the requirements for polymeric dielectrics [3, 4]. However, the requirements for them become tougher, so that next-generation materials should have k < 2, which stimulates the search for polymeric materials with ultralow dielectric constants [5].

One approach to the design of polymeric materials with ultralow k values implies the use of heat-resistant polymeric micro- and nanoporous structures. The latter are usually obtained by decomposition of block copolymers consisting of thermally stable and unstable blocks [6], as well as by thermolysis of polymer blends with high T_g values and thermally unstable fillers [7]. However, such approaches are rather laborious and are accompanied by undesirable side effects. We have suggested a more efficient, simple and environmentally safe method of nanoporous polymeric structures producing with the use of supercritical carbon dioxide (SC CO₂). As distinct from the other methods, the method of nanoporous structures preparation in SC CO₂ makes it possible to approach the lowest possible k value by choosing an appropriate molecular structure and controlling the pore size in the matrix of nanoporous polymeric materials.

RESULTS

In this work, we synthesized new phenyl-substituted polyphenylenes and obtained, on their basis with the use of SC CO₂, nanoporous materials with ultralow dielectric constant (k < 2) in combination with high thermal and mechanical characteristics. The dielectric properties of the polymeric materials were improved in two steps by (i) synthesizing of fluorinated phenyl-substituted polyphenylenes (FPSPPs) since they have lower dielectric constants ($k \sim 2.5$) [8-10] than common heat-resistant polymers (k > 3) and (ii) creating of micro- and nanoporous structures in the FPSPP matrix in SC CO₂.

Therefore, in this work, using previously synthesized fluorine-containing bis(tetraarylcyclopentadienones) I and III [11], we synthesized new FPSPPs containing fluorine in the central hexafluoroisopropylidene groups and in phenyl rings by the Diels – Alder reaction of compounds I and III with 4,4'-diethynyltolane (DET) (Scheme 1).

FPSPPs were synthesized in 1, 2, 4-trichlorobenzene at 150°C for 40 min. Al reactions were homogeneous with nearly quantitative yields. The viscosities were within 0.51-0.85 dL

/ g. The molecular weights and polydispersity of the polymers determined by GPC were within the following ranges: $M_w = (86.7-120.0) \times 10^3$, $M_n = (30.1-50.4) \times 10^3$, and $M_w/M_n = 1.98-2.88$. The FPSPP structure was confirmed by IR spectroscopy and ¹H, ¹³C, and ¹⁹F NMR. The IR spectra of all polymers have no signs of absorption bands of ethynyl (3210, 2200 cm⁻¹) and carbonyl (1709 cm⁻¹) fragments of tetraphenylcyclopentadienones, which is evidence of the formation of a polymer and a low concentration of terminal groups. The ¹³C NMR spectra do not show the signals at $\delta = 200$ and 80 ppm typical of the cyclopentadienone and terminal acetylene groups. The ¹⁹F NMR spectra of polymers IIa-IIc show the signal at $\delta = -112$ ppm assigned to the fluorophenyl substituents of the polymers.

Scheme 1.

Ia: (R = R' = H, Ib: R = H, R' = F; Ic: R = F, R' = H. *IIa:* R = R' = H, IIb: R = H, R' = F; IIc: R = F, R' = H. *IIIa:* R = R' = R'' = H, IIIb: R = R'' = H, R' = F; IIIc: R'' = R' = H, R = F; IIId: R'' = H, R' = R = F'. *IVa:* R = R' = R'' = H, IVb: R = R'' = H, R' = F; IVc: R'' = R' = H, R = F; IVd: R'' = H,R' = R = F).

All synthesized polymers are soluble in common organic solvents: toluene, THF, DMSO, DMF, N-MP, and chloroform. The high solubility of the polymers in chloroform allowed us to obtain their films with a tensile strength (σ) of 58.8-69.5 MPa and an elongation (ϵ) of 3.1-8.1% (Table 1).

Dolumon	$\eta_{red}, dL /g$	$M = 10^{3}$	$M = 10^{3}$	N <i>A</i> /N <i>A</i>	T	T_{10} °C Tensile properties of		of films
Polymer	(N-MP, 25°C)	M _w ·X 10	$\mathbf{M}_n \ge 10$	IVI _W /IVI _n	air	argon	σ, MPa	ε,%
IIa	0.78	99.8	50.4	1.98	470	510	67.0	5.0
IIb	0.85	101.4	48.3	2.10	477	521	69.5	5.4
lie	0.65	110.0	46.3	2.38	460	515	65.0	5.0
IVa	0.64	112.5	45.0	2.50	473	513	65.8	8.1

Table 1. Som	e molecular w	eight, therma	l, and mechanical	l characteristics	of FPSPPs II and IV
		0 /	/		

IVd	0.51	86.7	30.1	2.88	417	500	58.8	3.1
IVc	0.70	120.0	50.0	2.40	476	520	63.2	7.0
IVb	0.59	110.1	39.3	2.80	449	501	66.1	7.8

FPSPPs have high glass transition temperatures (290-340°C, Table 2). The temperature of 10% weight loss for all polymers in an argon atmosphere and in air was in the range 501-521 and 417-477°C, respectively. The k values for dense fluorinated polymers measured in vacuum at a frequency of 1 kHz were within 2.54-2.74. As expected, the introduction of fluorine into macromolecules of phenyl-substituted polyphenylenes (PSPPs) was accompanied by a decrease in the dielectric constants of these systems as compared with the previously synthesized nonfluorinated PSPPs [8]. This is likely due to the substitution of hydrogen atom for bulky fluorine atom in PSPPs leading to a decrease in the electronic polarizability of the C-F bond as compared with that of the C-H bond, the decrease in the chain packing density, and the increase in the free volume and hydrophobicity of the polymer.

On the basis of the FPSPPs, micro- and nanofoams with controlled pore size and shape were obtained. First, polymer films were saturated with carbon dioxide at the saturation pressure $P_{sat} = 5$ MPa and the saturation temperature 7-25°C. After CO₂ was sharply removed from the reactor (5 s), the film was dipped for 30 s (foaming time) into a glycerol bath heated to $T_{foam} = 240-290$ °C. This was accompanied by sharp desorption of CO₂ from the surface and simultaneous foaming of the polymeric material. The surface was depleted of carbon dioxide, and a dense skin layer formed around the foamed core. The foamed samples were placed into an ethanol-water (1:1) mixture and dried in vacuum for 20 h at 30° C. Some characteristics of the foamed polymers are listed in Table 2

Sample	T_{foam} °C	$T_g \ ^\circ C$	Density, $g/cm^3 *$	Morphology**	k***
IIa	-		1.28	Dense polymer	2.80
	250	240	1.22	Micropores	2.58
	290	540	0.98	Nanopores	2.00
IIb	-		1.25	Dense polymer	2.74
	250	220	0.95	Micropores	2.4
	290	330	0.78	Nanopores	1.77
IIc	-		1.24	Dense polymer	2.69
	250	311	0.91	Micropores	2.18
	290	511	0.71	Nanopores	1.70
IVa	-		1.24	Dense polymer	2.63
	240	207	1.08	Micropores	1.97
	280	291	0.86	Nanopores	1.68
IVb	-		1.24	Dense polymer	2.58
	240	240 290 1.10		Micropores	1.91
	280	290	0.71	Nanopores	1.65
IVc	-		1.24	Dense polymer	2.54
	240	202	1.02	Micropores	1.88
	280		0.70	Nanopores	1.65
IVd	-		1.23	Dense polymer	2.54
	240	205	0.98	Micropores	1.81
	280	293	0.73	Nanopores	1.61

Table 2. The electrophysical characteristics of FPSPPs II and IV

Note: $P_{sat} = 5MPa$, $T_{sat} = 25^{\circ}C$.

* The density of common and foamed polymers was determined according to ASTM-D-792 "Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement" in hexane.

** The morphology of foamed polymer samples was studied with a transmission electron microscope.

*** The dielectric constant was measured at 1 kHz and 25°C in a vacuum of 10 mm Hg.

The morphology of the films mainly depended on variation of P_{sat} , T_{sat} , and T_{foam} . According to transmission electron microscopy, the porous FPSPP films have cellular morphology with pores 50-100 nm in size. For all polymers at their maximal foaming temperature T_{foam} , comparable porosities of ~40% were obtained. The dielectric constants of the nanoporous materials were within 2.74-1.61 depending on the polymer structure and foaming temperature. These *k* values are considerably lower than the limiting *k* value for common polymers.

In summary, it is worth noting that P_{sat} , T_{sat} and T_{foam} , as well as the decompression regime, can be used as additional parameters for controlling the pore size. The decrease in T_{sat} to zero considerably improves the solubility of CO₂ and thereby reduces the CO₂ diffusion rate from the film. Microcellular morphologies prevail when saturation occurs at 25°C, whereas nanoporous morphologies with record low *k*'s are formed at T _{sat} = 0 °C. Only nanoporous structures with a pore size below 10 nm can be potentially used in multilayer integrated circuits [5]. We intend to study the effect of T _{sat} and other parameters of the process, as well as the pore size and shape, on the dielectric constant *k*.

CONCLUSION

Thus, we have synthesized new FPSPPs and, on their basis, have developed heatresistant nanoporous materials with controlled ultralow dielectric constants (1.97-1.61). The approach to the development of nanoporous structures for PSPPs with the use of SC CO₂ is suggested for the first time and is a base for the creation of new breakthrough technologies in the field of microelectronics.

ACKNOWLEDGMENTS

This work was supported by the Russian Academy of Sciences (program no. OKH-2 of the Division of Chemistry and Materials Science, RAS) and by the Presidium of the RAS (program no. P-21 "Fundamentals of Basic Research of Nanotechnologies and Nanomaterials").

REFERENCES:

[1]. MAIER, G., Prog. Polym. Sci., Vol. 26, 2001, p. 3

- [2]. VOLKSEN, W., MILLER, R.D., and DUBOIS, G., Chem. Rev., Vol. 110, 2010, no. 1, p. 56
- [3]. SEITO, H., MOSHIZUIKI, A., HABA, O. et al., J. Polym. Sci., Part A, Vol. 36, 1998, no. 17, p. 2261
- [4]. MYUNG, B.Y., AHN, C.J., and YOON, T.H., Polymer, Vol. 45, 2004, no. 10, p. 3185
- [5]. KRAUSE, B., METTINKHOF, R., VEGT, N.F.A. et al., Macromolecules, Vol. 34, 2001, no. 4, p. 874
- [6]. KIM, D.W., HWANG, S.S., HONG, S.M., et al., Polymer, Vol. 42, 2001, no. 1, p. 83
- [7]. TAKEICHI, T., ZUO, M., and ITO, A., High Perform. Polym., Vol. 11, 1999, no.1, p. 1

[8]. RUSANOV, A.L., KESHTOV, M.L., KHOKHLOV, A.R. et al., Vysokomol. Soedin., Vol. 43, **2001**, no. 14, p. 581

[9]. RUSANOV, A.L., KESHTOV, M.L., KESHTOVA, S.V. et al., Vysokomol. Soedin., Vol. 42, **2000**, no. 11, p. 1931

[10]. Rusanov, A.L., Keshtov, M.L., Belomoina, N.M., et al., Vysokomol. Soedin., Vol. 42, 2000, no. 3, p. 404

[11]. Keshtov, M.L., Petrovskii, P.V., Stakhanov, A.S., et al., Dokl. Chem., Vol. 429, **2009**, part 2, p. 277, [Dokl. Akad. Nauk, Vol. 429, 2009, no. 2, p. 206].