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ABSTRACT- In this study, an improved iterative mathematicethesne is employed to
handle nonlinear equations arising in estimatiothefmodynamic properties at supercritical
conditions. The method takes the classical NewtapHRhon method as a starting point. It is
demonstrated that the proposed method enjoys higgnees of accuracy and requires less
iteration numbers to reach to a specific solutiompared to that of by the Newton-Raphson
technique. To illustrate the efficiency of the menéd solution technique, some numerical
examples are also given. The proposed method sy baen implemented into computer
codes to provide parametric, not numeric, solutitmshe target equations. Consequently,
one can derive other thermodynamic properties whigbe not been treated parametrically
yet, based on this approach.
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INTRODUCTION

Precise thermodynamic data at supercritical camuitiare vital for design, modeling and
simulation of supercritical systems. Equations tates (EOSs), while chosen appropriately,
can provide reliable huge sets of data in a mostiensed manner and serve as strong tools
for many thermodynamic calculations. Many EOSs hbeen proposed for simulate the
behavior of pure components/mixture in superctitiegions (see for example [1-4]). Almost
recently and on the basis of Nakamura-Bredveld$tiém (NBP) equation of state [5],
Koziol has come up with a quintic equation of segdplicable to substances both in sub- and
supercritical conditions [6]. The equation is:

p(Tv)= il [(E\//__(:);;e va i(g,)_b) 1)

where a, b,c,d,eare five temperature-dependent parameters to beusdied later.

Obviously, the preceding equation is quintic wigspect tov (molar volume). As the
classical Abel's impossibility theorem suggests titageneral formula for achieving zeroes
of most polynomials with degree greater than 4teXig|, robust computation of the roots of
eg.(1) entails complexity.



It is the objective of this paper to present a N@maRaphson type improved iterative scheme
to treat eq.(1) elegantly. The initial idea stermenf [8]. The approach is based on
incorporating a powerful analytical solution tedue namely, Adomian Decomposition

Method (ADM) into the traditional Newton-Raphsorutioe. ADM has established a good

reputation in various braches of science and eegimg, particularly for treating nonlinear

functional equations. The interested reader ismegended to consult [9] for background

knowledge on ADM and [10-12] for its applicatiorfsor better reference, hereinafter, we
abbreviate the eq.(1) by EOS5 and the proposedanidty EOS5-ADM-NR.

FOUNDATIONS OF ADM

In this section we provide a quick review of bagit&DM for the convenience of the reader.
Consider a general functional equation as follows:

Lu+Nu+Ru=g 2)
wherelL is an easily invertible linear operatdt,s a nonlinear operator which maps a Hilbert

spaceH to H, andR denotes the remaining part (and obviouslg a unknown function). By
defining the inverse operator bfasL™, it is directly concluded that:

L'Lu+ L™ Nu+L*Ru=L"g 3)
ChoosingL as an n-th order derivative operator into accownt, becomes an n-fold
integration operator. Thus, it is followed thatLu=u+a, wherea is appeared from the

integrations. ADM suggests the final solution innfioof u = z ol . Lettingug =L'g-a, eq.
(2) yields:

u=u,-L*Nu-L"Ru (4)

Furthermore, ADM forces the representation i be in form of a special infinite series
called Adominan polynomials as follows:

Nu=> A, (5)

where A, is classically suggested to be computed from [9]:

A, (Up, U, U,) = 1 {dd/:n N(i)liui ﬂ (6)

n! i=0
Hence, a recurrence can be constructed to caldhtemnant solution terms as:

u,=-L"A-L'Ru ; i=0 (7)



DESCRIPTION OF THE METHOD (EOS5-ADM-NR)
The five temperature-dependent parameters of e@(&) determined by the following
formula:
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where;

a(r)=(r.)" (13)
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The aforementioned, represents the temperature of an arbitrary saarabint and is used
in determination of parametersy,, m, and m,. The formula for derivation of these

quantities is beyond the scope of this paper aagadable elsewhere [6].
One can easily rearrange eq.(1) as follows:
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For the sake of brevity, the prior equation is tentas:
Ve+kvi+kyi+kyi+ky +k,=0 (17)

where,
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Now, let us construct the mathematical basis of EABM-NR.
Assume that we are after the solution of the follmanonlinear equation:

f(x)=0

By Taylor’s expansion we can write:

f (x =h)=f (x)-hf '(x)+7f "(x)-—

h2

h3
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Consider a small value fdr, such that:

h? h® h*. . h®

f (x-h)=0=f (x)-hf (x)+7f (x)—ff (X)+Z‘,f (X)_Eof (x)
Therefore,
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where A, , B, ,C,,D, denote i-th component of Adomian polynomials correspond to
h?,h* h* h®, respectively.
In keeping with principles of ADM, it is deducedath

_f(x)
AE®
frx)  1f"(x). . 1fv(x).  1f'(x) %)
hy =t A —= B, +——1C ——— D,; i20
o2f(x) "t 6f(x) 241 '(x) 120f '(x)
So,
) 1f(x)e, 1) e 11 (x)e
N 2T ) BN T ) B 2 ) 2 29
1 (X))
1207 (x) =P
which gives us the sought-after iterative solufiamula as,
) 1) e, () e, 1TV (X))
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As convergence speed of Adomian polynomials arg kigh, there is no need to expand the
summations in eq.(30) up to more than their firg¢ins. Also, note that the resulted formula
is general and can be applied to any other nonlimemation arising in supercritical
engineering discipline. Now all is needed is tolgppe implement the eq.(30) to eq.(17).

ILLUSTRATIVE EXAMPLES

To demonstrate the reliability and efficiency of #&ADM-NR, we have computed the
molar density of five substances in their supdoaitstate and compared the estimates with
Newton-Raphson algorithm. Table 1 lists the paramnsetequired for the selected substances.
As shown in table 2, EOS5-ADM-NR vyields an identisalution after less number of
iterations required by the classical Newton-Raphstoreover, as depicted in Fig.1, EOS5-
ADM-NR has provided estimations which are in ex@alagreement with experimental data
for supercritical Argon.



Table 1. Parameters of EOS5 for some famous substances [6]

T, P, T,
Substance [K ] [M Pa] Q, Q, m, m, m, 4 o £ [K ]
CO, 304.128| 7.3773| 0.543196 0.0981227 0.36484 -0.30058.266 2.70831 1.03674 0.048102 216{60
H.0O 647.096| 22.064| 0.629121 0.0420773 0.83638 0.33314401617 | 15.1849 1.450¢ 1.12124 400{00
CH, 190.564| 4.5992| 0.511565 0.08136p64 0.307615 0.01176D6538| 3.1072¢ 1.03165 0.293246 108.0
C,H, 305.33 | 4.8718| 0.528567 0.0896589 0.314602 -0.09/M826795| 2.8356% 1.01956 0.098953 184.31
Ar 150.687| 4.863 | 0.513023 0.08955[/2 0.247433 -0.011R07171| 2.57258 1.01665 0.1513p9 87.178

Table 2. Comparison of Results by EOS5-ADM-NR and Newton-Raphson M ethods

Number of | Number of Calculated molar
s Ty +150 2xF, Iterations Iterations . density
ubstance IterationTolerance
[ K ] [ M pa] (Newton- (EOS5- p[kmol D;m—s]
Raphson) | ADM-NR)
CO2 454.128 14.7546 21 17 1E-10 5.06320284150
H 2O 747.096 44,128 24 21 1E-10 7.10757099045
CH 4 340.564 9.1984 21 16 1E-10 5.7317654978Y
CZH 6 455.33 9.726 17 14 1E-10 3.29338717954

“Ildeal gas assumption is taken as the initial gf@ssoth methods.
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Figure 1. Pressure-Density Relation of Supercritical Argon



CONCLUSION

An improved iterative scheme was proposed for tneat of a quintic equation of state which
is dedicated to supercritical regions. Based orrékalts, the proposed method was shown to
be efficient and accurate and superior to the tiadil Newton-Raphson in terms of the
necessary numbers of iterations for convergences fett can be of interest for relevant
massive computer simulations. As demonstrated faJoA as a case study, the chosen
equation of state combined with the proposed smiutechnique admirably simulates the
experimental data.
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