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Abstract

Liquid water is still a puzzle. Unlike ordinary stances, one can regard water near the triple
point and in the supercooled region, on the one,sahd water near the vapor-liquid critical
point, on the other side, as “the same substarnee-different liquids”. Highly-compressible,
low-dielectric-constant near-critical water is coonty used as a supercritical-fluid solvent. On
the low-temperature side of the phase diagram, migtean almost incompressible, high-
dielectric-constant solvent with some mysteriougpprties. In this region, some of the puzzles
of liquid water can be explained by the virtualst&nce of the liquid-liquid critical point in
metastable supercooled region. Therefore, supexddigjuid water can be regarded as a specific
“supercritical fluid”. In particular the concept tfe Krichevskii parameter, which controls the
behavior of supercritical fluid solutions near thelvent vapor-liquid critical point, can be
generalized to supercooled water solutions. Fluicins of entropy, diverging at the liquid-liquid
critical point, may be associated with anomaloussgrity (“susceptibility”) of water structure

to external perturbations and may also be resplendir mysterious behavior of some
nonelectrolyte agueous solutions. By stabilizing filactuations of water structure, through self-
assembly of small organic molecules in aqueougisok;, one can create unusual nanoparticles
and novel smart materials.

l. Introduction. Water: One Substance — Two DifferentLiquids

Unlike ordinary substances, one can regard watar tige triple point and in the
supercooled region, on the one side, and water theavapor-liquid critical point, on the other
side, as “the same substance — two different Igjuiihis can be illustrated by the behavior of
the dielectric constant shown in Fig. 1. Highly-quessible, low-dielectric-constant near-critical
water is commonly used as a supercritical-fluidvent. On the low-temperature side of the
phase diagram, water is an almost incompressilif-dielectric-constant solvent with some
mysterious properties. In this region, some ofgghezles of liquid water can be explained by the
virtual existence of the liquid-liquid critical pdiin metastable supercooled region, as already
suggested by the behavior of the isobaric heataiigpshown in Fig. 2

In 1971, Voronel [1] speculated that the liquictset of some substances might be
envisioned as a state between two singularities:gés-liquid critical point and the absolute
stability limit of the liquid phase located belohettriple-point temperature (see also ref. [2], p.
387). At that time, calorimetric measurements inewg3] indeed showed a noticeable increase
of the isobaric heat capacity upon modest superm@--8°C). However, the breakthrough in
this field came with Angell et al.'s publication 01973 [4] of accurate heat-capacity
measurements of supercooled water emulsified itahep made using a procedure developed by
Rasmussen and MacKenzie [5]. Reaching temperatisré&sy as -39°C at atmospheric pressure,



Angell and co-workers [6,7] observed a sharp imsgeain the isobaric heat
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capacity that resembles a critical-point-like silagitly. In subsequent experiments, the
isothermal compressibility [11,12] and thermal exggity [13,14] were also found to exhibit
similar anomalies upon supercooling.

A plausible, thermodynamically consistent, explaraof the global phase behavior of
supercooled water was formulated in 1992 by Poblal.fL5]. According to this explanation,
there exists a critical point of liquid-liquid castence, deep in the supercooled region, which
terminates a line of first-order transitions betweawo liquid phases, namely, a low-density
liquid and a high-density liquid. Consequently, thigserved anomalies in the heat capacity,
compressibility, and thermal expansivity resultnfraghe "virtual" divergence of density and
entropy fluctuations at this critical point.



In order to coordinate the various experimentaldiigs, we developed a scaled
parametric equation of state for the neighborhoddth® liquid-liquid critical point in
supercooled water [10a]. It was assumed that thadiliquid transition in supercooled water
does exist and is characterized by a scalar ora@anpeter, and thus belongs to the Ising-model
universality class. More recently, we revisited amdised this parametric scaled equation
[10b,10c]. Correlating the available experimentatiadwe located the critical point at about 227
K and 28 MPa; the latter is much lower than expkdtern computer simulations [16]. The
suggested location of the second critical point #red liquid-liquid coexistence are shown in
Figs. 3 and 4.
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Figure 3. Suggested phase diagrarn
water with the virtual critical point of
_ liquid-liquid coexistence [10]. £
stable designates the second critical point ¢
water water; Ty is the melting lineTy is the
line of spontaneous homogeneous
crystallization. The continuation of
the liquid-liquid transition line into
the homogeneous region is shown by
the dashed curve and is known as the
Widom line.
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In this presentation, | demonstrate the peculi@rmiodynamics of the liquid-liquid
critical point in supercooled water. It is showattkhe liquid-liquid criticality in water represeant
a special kind of critical behavior in fluids, inteediate between two limiting cases: the lattice
gas, commonly used to model gas-liquid transitioasd the "lattice liquid", a weakly-
compressible liquid with an entropy-driven phasgasation. This peculiar thermodynamics has
important practical consequences, in particular,tfe behavior of aqueous solutions at low
temperatures.



Scaling Fields and Phase Separation in “Lattice Ligid”

Two features make the second critical point in wateenomenologically different from the
well-known gas-liquid critical point. The negatistpe of the liquid-liquid phase transition line
in the P-T plane means that high-density liquid water is piwase with larger entropy. The
relatively large value of this slope at the critipaint (about 25 times greater than for the gas-
liquid transition at the critical point) indicatéise significance of the entropy change relative to
the density change, and, correspondingly, the itapoe of the entropy fluctuations. These
features suggest that liquid-liquid phase separatiowater is mostly driven by entropy rather
than by energy.

The famous lattice-gas model is a symmetric prggtpf the liquid-vapor transition in
fluids, which, despite its simplicity, reflects theost important features of fluid phase behavior.
The lattice-gas model is equivalent to the Isingdetofor incompressible anisotropic
ferromagnets. All fluids belong to the same uniaétg class of criticality as the Ising model.
Criticality in the lattice-gas/Ising model is dabed by two independent scaling fieldsandh,

- designated ordering field and thermal field, extwely - and a third fieldhs(h;,h;), which is
the critical part of the field-dependent thermodwi@apotential. The independent scaling fields
are thermodynamically conjugate to two scaling dmss The strongly fluctuating scaling
densitygp, (the order parameter) is conjugatehicand the weakly fluctuating scaling density

is conjugate toh,. In the lattice-gas model, and, correspondingby, ¥apor-liquid critical
phenomenah; is associated with the chemical potentiaivhile h, is the temperature distance
AT to the critical point. In order to apply the laage of Ising criticality to a weakly-
compressible single-component liquid that exhibitgjuid-liquid phase transition upon increase
of pressure, we considered the following modelrretéto as “lattice liquid” [10b]. We describe
lattice liquid by the Ising scaling fields such tthiae temperature distaned is taken to be the
dominant contribution toh;, and the pressure distaned® is taken to be the dominant
contribution toh,:

h =AT +cAP

, 1
h, =AP @)
where the coefficient represents the slope of the liquid-liquid coexiseedefined as the zero
field condition,h; = 0. Consequently, the major contribution to thdeorparameter of lattice
liquid is the entropy, while the density contrilmurtiis proportional tac <<1. Two alternative
formulations of the theoretical scaling fields tigh the physical fields are illustrated in Fig. 5.

Figure 5. Two alternative formulations fc
scaling fields in water [10b,10c].;@esignates
the liquid-vapor critical point and,Ghe liquid-
liquid critical point. The Widom line (dashed)
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Scaling equation of state cannot be foatmad through the scaling fields, andh,, in an
explicit form. This is why a parametric represetatof the critical equation of state [17]
appears both elegant and convenient for applicaitibhe simplest form of the scaled parametric
equations of state is the so-called “linear modeltiich represent the scaling fields and the order
parameter as functions of the “polar” variablesd 8 (Fig. 6):

h=ar’g(1-6°),
h, =r(1-b°6?), )
¢ =kr”6,
where y [01.24 andB [0 0.325are universal critical exponents, the universakfitcient

b®> =(y-2pB)/y(1- B) 01.36 whilea andk are system-dependent amplitudes (see more details
in refs. [9,17]).
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d 2 field h, and the order parametey through the
variables of the parametric “linear model”. The
ordering fieldn,=0 if #=0 and ¢ =+1. Reproduced
from ref. [17].

The beauty and simplicity of the linear model iattthe singular (critical-fluctuation-induced)
behavior of thermodynamic functions is defined ke tvariabler only, whereas all these
functions are analytical with respectéo

We have developed a phenomenological mean-fieldemtbdit clarifies the nature of the
order parameter in a polyamorphic single-comporigntid and which shares the scaling
properties of the lattice liquid. This leads to glyrentropy-driven phase separation. Let us
assume that the liquid is a "mixture” of two sta#sand B, of the same molecular species. For
instance, these two states could represent twerdiif arrangements of the hydrogen-bond
network in water. We also assume that the individnalecules are identical in both states,
leaving aside any concerns regarding the continofitthe fluid phases. The concentration of
water molecules involved in either structure, dedot for state A and -k for state B, is
controlled by "chemical reaction" equilibrium. Seg#on into two fluid phases with different
equilibrium values ofk will occur above the critical pressuRg. In lowest approximation the
solution model assumed to be athermal. While tegular-solution™ model describes the lattice-
gas type of the phase diagram, the "athermal-solutversion predicts the liquid-liquid



separation driven only by the non-ideal entropyroking. However, unlike an athermal non-
ideal binary fluid, the entropy-driven phase sepamain a polyamorphic single-component
liquid does not happen at any temperature. Cohtrahe critical temperaturé&._ is specified
through the critical value of the reaction equilipn constant.

Real water is undoubtedly more complicated, howeagrthe following analysis shows, the
lattice-liquid model captures the important anomalteatures of supercooled water's behavior.

Il. Scaling Correlation of Experimental Data

In describing the thermodynamic data for bulk sapeled water we adjust only two critical
amplitudesk anda, the critical pressure, and the backgrounds whrehassumed to be regular
functions of temperature and pressure. As the fagproximation, by using the linear
backgrounds, we attributed all the experimentalbgayved curvatures in the thermodynamic
derivatives to the critical-point anomalies [10lloreover, we adopted the location of the liquid-
liquid coexistence and its continuation, the Widlbme, from an estimate of Mishima [18] and
fixed k=a. With such a minimalistic approach, we have olgdifor ordinary water the following
critical parameters of the second critical pofP¢=27.5 MPa and=227.4 K. In particular, we
have confirmed our earlier result [10a] that th&aal pressure is much lower than that predicted
by most of simulations [16]. In the descriptiontafik heavy water, to minimize the number of
adjustable parameters, we adopted all the parasnebtained for ordinary water, including the
critical pressure, except for the critical temperat found to be 235.2 K, and the different linear
backgrounds. As a better approximation [10c], wenttallowed a small adjustment in the
location of the liquid-liquid coexistence withoutanging the critical pressure and added more
analytical terms in the adjustable background efdhemical potential. This approach enables us
to nicely describe not only the second derivatioéshe free energy but also the density of
supercooled water in a broad range of temperatamespressures. The adjusted value of the
critical temperature is 224.2 K. The results of éxperimental-data analysis for ordinary water
are presented in Figs. 7-10.
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Figure 7. Isobaric heat capacity vers
temperature in supercooled water. Solid
——e curve is our model [10c], IAPWS-95
(short dashed) [8]. Symbols represent
experimental data of Angell et al. [6] an
Archer and Carter [19].
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Figure 8. Densitie: of cold anc
supercooled water according to our
model (curves) [10c]. The symbols
represent experimental data of Mishima
[18], Sotani et al. [20] and Hare and
Sorensen [14]. The symbols for
Mishima’s densities on different isobars
are alternatively open and filled to guidg
the eye.

Figure 9. Isothermal compressibilit
according to our model (curves) [10c].
Symbols represent experimental data of
Speedy and Angell [12], Kanno and
Angell [13], and Mishima [18]. Solid and
open symbols with the same shape
correspond to the same pressure.

Figure 1C. Expansivity coefficien
according to our model (solid curves)
[10c]. Symbols represent experimental
data of Ter Minassian et al. [21] and Hdre
and Sorensen [13, 14].
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II. Confined Supercooled Water

Recent measurements of supercooled water in naoponedia provide a unique means of
testing features of the second critical point higpsts. In confined water, spontaneous
crystallization can be suppressed, allowing for sneaments below the bulk homogeneous-
nucleation temperature. Much attention has focusedlynamic properties of confined water.
Recently, Nagoe et al. [22] have reported maxim¢gheisobaric heat-capacity of normal and
heavy water confined in cylindrical silica MCM-4&mopores, and investigated the effect of
changing the pore diameter. Remarkably, the hephaty exhibits maxima approximately
located along the Widom line predicted for bulk evatwhere it is not accessible because of
spontaneous crystallization. However, the heightthef maxima and the shape of the heat
capacity in porous media differ significantly fraimose of bulk water, as seen from Figs. 11la
and 11b.

It is known that the behavior of near-critical €8t in confined geometries deviates from
that seen in bulk as a result of finite-size effedthe theory is known as finite-size scaling [23].
Singular critical-phenomena behavior is observdg when the characteristic size of the system
L is much larger than the correlation length oficait fluctuationsé. In systems, where~¢,
finite-size effects may significantly alter the timdynamic anomalies. In particular,
singularities are replaced Hy-dependent maxima, the location of these maximahified
relative to the bulk critical point, and the anooa behavior is smeared out over a larger range
of temperatures and pressures. Recent measurewpfetite correlation length in supercooled
water suggest thd@treaches-1 nm in the supercooled region [24]. The nanopaedters used
by Nagoe et al. vary frob~1.7 to~2.4 nm. These sizes are certainly in the range avfieite-
size effects will be relevant, if not dominant.
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Fig. 11. Heat capacity of supercooled water confined iinclylcal nanopores with different diameters.
Symbols are experimental data [23]. Solid curvesmedictions of finite-size scaling [10b]. Dash,eqis
curve represent bulk water.

It may be dangerous to quantitatively analyze tkistiag data on water in terms of the
conventional theory of finite-size effects, sinbe tylindrical geometry of the silica MCM-41
nanopores and surface interactions are ignoretiartiteory. In the absence of an appropriate
theory, we have to focus on the qualitative featwiefinite-size effects. Although the theoretical
predictions do not exactly follow the experimerpaints, they do capture all of the important
features qualitatively. In magnetic and fluid sys$e finite-size scaling predicts a size-dependent

8



shift in the temperature and pressure where phyprogerties exhibit a maximum. Within the
experimental errors, all of the curves are intatesl by finite-size scaling through a single
characteristic length scalé?.. Finally, the theory predicts that the anomalgrseared out above
the transition temperature, although this effecpesps to be more significant for the
experimental data than for the predictions of migd-finite-size scaling. That the smearing is
greater for smaller size is best illustrated bydh&a for heavy water. At the maxima, the 2.4 nm
pore heat capacity is greater than the 1.7 nm Ipeaé capacity but well below the bulk data.

V. Supercritical-Supercooled: A Novel Supercritical Stvent?

The concept of the second critical point in watgses an intriguing possibility to consider
cold water as a novel supercritical solvent. Onetlem major thermodynamic quantities that
control the behavior of supercritical solvents he so-called Krichevskiparameter [25]. The
Krichevski parameter is defined as

< =iim (apj dT{dP (apj } @)
X Jr, x| dT, \0T A,

wherex is the mole fraction of solute. Because of thenagous large value of the derivative
(aP/ aT)V . for almost incompressible liquid water, the valieh® Krichevski parameter may

be very large. Physically, it means that even & gerall addition of the solute may significantly
affect the properties of cold water and aqueoustieols.

In particular, this feature of cold water may résaolthe development of new kinds of
stable nanoparticles built from small organic males. It was recently shown [26] that micro
doping of propylene oxide into aqueous solutiontedfbutanol, produce

100 nm particles. Figure 12 shows the light-scatteintensity auto-correlation function of
cold-filtered TBA aqueous solution after the adiitiof 7x10°mole fraction PO at 8.5C.
After the addition of PO, the mesoscale particlg®gviously removed by cold filtration, re-
emerge, as indicated by a sharp increase in thédigattering intensity and the appearance of
the slow diffusive relaxation mode in the correatifunction. This sample has been monitored
for about 3 months, and no significant change efrthnoparticle size is observed.

Figure 12. Light-scatterinintensity
auto-correlation functions for 0.073 mol
fr tert-butanol cold-filtered aqueous
solution, doped with a micro mole
amount of propylene oxide, at the
scattering anglé = 60 andT = 8.5°C.
Right-side curve is slow cooling (5 K/hr).
Left-side curve is fast cooling (3 K/min)
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V. Conclusion

In this presentation, it is assumed that the lidigdid critical point in water does exist.
Although | consider this scenario as most plausibteer interpretations of the anomalies in
supercooled water still worth attention. Some eixpents in confined water [27] may be
interpreted as a second-order phase transition dine weakly first-order transition line,
replacing what is commonly believed to be the Widiame. Such an interpretation would be
more radical than any of the scenarios suggestegupercooled water thus far because it
requires the existence of a vector-like order patamsimilar to that in the super-fluid liquid
helium. Most recently, the discussion on the natfr¢he anomalies observed in supercooled
water has received an additional impetus after Lémand Chandler reported new simulation
results [28] for two atomistic models of water. yhiwund only a single liquid state in the
supercooled region and excluded the possibilitytha liquid-critical point for the models
studied. It would be important to compare the arl@sgredicted by the models with those
exhibited by real water. The final conclusion oa #xistence of the liquid—liquid critical point in
water should be based on the ability to explain guahtitatively describe the experimental data.
The information provided in this presentation shdhet a critical-point parametric equation of
state describes the available thermodynamic datsupercritical water within experimental
accuracy, thus establishing a benchmark for arthduidevelopments in this research area.
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