S - L TRANSITION OF PEG 35000 UNDER PRESSURE OF NITROGEN AND CARBON DIOXIDE

Zoran Mandžuka, Mojca Škerget, Željko Knez*

University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory for Separation Processes and Product Design, Smetanova ul. 17, SI-2000 Maribor, Slovenia zeljko.knez@uni-mb.si

Abstract: The aim of the present work was to investigate thermal behavior such as melting temperature (T_{onset} and T_{endset}) of PEG in presence of compressed CO₂ and N₂ and to compare new measured data with the results obtained previously by capillary method. Completely new data on heat of fusion under pressure of gas and degree of crystallinity for PEG (M_w 35000) under pressure of nitrogen and carbon dioxide in the pressure range up to 100 bar have been determined. Measurements were performed on HP DSC1 STAREe, METTLER TOLEDO. Samples of PEG were heated from 293K to 373 K with the heating rate of 5 K/min. The results showed that CO₂ under pressure significantly affect thermal behavior of PEG. T_{onset} and T_{endset} of PEG under pressure of CO₂ were lowered for approximately 5-10 °C depending on pressure compared to melting point at atmospheric conditions while in presence of N₂ decrease in melting is negligible. Comparison of both HP methods (DSC and capillary) shows very small deviation of measured data. Crystallinity degree (CD) of PEG after exposure to the CO₂ at elevated pressure, calculated on the basis of enthalpies of fusion, markedly decreased (up to 40% more amorphous phase was present), while after exposure to the N₂, CD was more or less constant.

INTRODUCTION

Poly(ethylene glycol) (PEG) is a condensation polymer of ethylene oxide, having the general formula $H(OCH_2CH_2)_nOH$, where *n* is the average number of repeating oxyethylene units (*n* = 4 to 180). The low relative molecular mass compounds (MW < 700) are colorless, odorless, viscous liquids, while compounds with relative molecular mass higher than 1000 are waxlike or solids.

PEGs are water-soluble polymers and are widely used in the pharmaceutical and cosmetic industries because of their physiological acceptance [1]. Their hydrophilicity, antithrombogenicity, and good biocompatibility recommend PEGs for biomedical applications, such as drug delivery devices [2,3,4] and tissue engineering scaffolds. The traditional methods for polymer processing involve either high temperatures, necessary for melting or viscosity reduction, or hazardous volatile organic solvents (VOCs) and chlorofluorocarbons (CFCs).

Due to the undesirable environmental impact of these solvents, extensive research is focused on seeking new and cleaner methods for the processing of polymers. One such method is the use of supercritical fluids as processing solvents or plasticizers. The special combination of gaslike viscosity and diffusivity and liquid-like density and solvating properties of a supercritical fluid makes it an excellent solvent for various applications [5]. $scCO_2$ can be used as solvent or antisolvent for obtaining PEG microparticles used as drug carriers [6,7]. The technique offers two important advantages. The first advantage refers to a better control of particle size, particle size distribution, and morphology, which can be achieved by tuning process parameters such as the amount of dissolved CO_2 , temperature, pressure, nozzle diameter, and depressurization rate. The second advantage refers to the lack of organic solvent or, when necessary, the efficient removal and recovery of the solvent. This allows sensitive bioactive molecules, such as proteins and drugs, to be introduced during polymer processing stages [8].

MATERIALS

Poly(ethylene glycol) (PEG) with molecular weight 35 000 was obtained from Merck, Germany, and was used without further purification.

Carbon dioxide (CO_2) and nitrogen (N_2) were obtained from Messer, Slovenia, and were used without further purification.

METHODS

Determination of melting point under pressure

Two methods were used for the determination of melting points of PEG under pressure of gas. *Capillary method*. A basic scheme of the capillary method used for the determination of the influence of pressure on the melting point of the substance in the presence of a gas is presented in Fig. 1. The optical cell has been designed for a pressure of 500 bar and temperature of 250 °C. The volume of the cell is 14 ml. The observation windows are made of sapphire and are fixed to the cell with screws. The cell is equipped with three additional openings for introducing and emptying the gas and to introduce a thermocouple. Pressurized gas was introduced via a high-pressure pump. The pressure was measured (accuracy within ± 0.1 %) by an electronic pressure gauge (Digibar PE 500, Hottinger-Baldwin), and the cell was electrically thermostated by a heating jacket (accuracy within ± 0.5 °C).

Figure 1: Capillary method for measuring melting points – basic scheme of the experimental apparatus.

DSC. Measurements were performed on HP DSC1 STAREe, METTLER TOLEDO (Fig. 2). Samples of PEG were heated from 293K to 373 K with the heating rate of 5 K/min. Melting temperature (T_{onset} and T_{endset}), heat of fusion and degree of crystallinity of PEG (M_w 35000) under pressure of N_2 and CO_2 were investigated in the pressure range up to 10 MPa.

RESULTS

Comparison of both methods for determing the melting point of PEG 35 000 under pressure of CO_2 is shown in Table 1.

HP DSC/CO ₂		Optical	cell/CO ₂	HP DSC/N ₂		
p (bar)	T _{ave} (K)	p (bar)	T _{ave} (K)	p (bar)	T _{ave} (K)	
1	336	1	336	1	334	
10	338	10	338	10	336	
20	336	20	336	20	334	
30	336	30	336	30	332	
40	332	40	332	40	330	
50	331	50	331	50	328	
60	329	60	329	60	327	
70	328	70	328	70	326	
80	328	80	328	80	325	
90	327	90	327	90	322	
100	326	100	326	100	321	

Table	1.	Melting	noint	of PEG	35 (000	under	nressure	of	CO_2	and N/	`
raute	1.	withing	point	ULLO	550	000	unuci	pressure	UI	CO_2	and m	2•

Results obtained with both methods showed similar trend with very small deviation of measured data. Compared to the melting point at 1 bar, the liquefaction temperature increases with increasing the pressure- to about 10 bar. In this pressure range (1-10 bar) the solubility of CO_2 in PEG is low, and therefore no decrease in the liquefaction temperature due to the solubilized

gas is observed. At pressures higher than 10 bar, the S-L transition temperature of the PEG decreases with increasing the pressure.

The melting course of PEG 35 000 under pressure of CO_2 and N_2 is presented in Fig. 3.

Figure 3: p – T diagram for PEG 35 000/CO₂ and PEG 35 000/N₂ systems.

The results showed that CO_2 under pressure significantly affect thermal behavior of PEG. T_{onset} and T_{endset} of PEG under pressure of CO_2 were lowered for approximately 5-10 °C depending on pressure compared to melting point at atmospheric conditions while in presence of N₂ decrease in melting is negligible.

Crystallinity degree was calculated on the basis of enthalpies of fusion by following equation:

$$cr(\%) = \frac{\Delta H_{mx}}{\Delta H_{m0}} \times 100,$$

where:

 ΔH_{mx} - enthalpy of fusion of PEG 35 000 after exposing under pressure of CO₂ and N₂,

 ΔH_{m0} - enthalpy of fusion of sample before exposing under pressure of CO₂ and N₂.

The enthalpy of fusion of unprocessed PEG 35 000 was taken as 100 %. Fig. 4 presents comparison in crystallinity degree of PEG 35 000 at different pressures. Crystallinity degree (CD) of PEG 35 000 markedly decreased when sample was exposed to pressure of CO₂. At 100 bar the content of amorphous phase was higher than 40 %. Degree of crystallinity after exposing to pressure of N_2 was almost equal to the degree before exposing.

Figure 4: Crystallinity degree of PEG 35 000 after exposing to pressure of CO₂ and N₂.

CONCLUSION

The knowledge of melting point variation in supercritical fluids is necessary for optimization of the high pressure spray processes. The melting points of polyethylenglycol with molar mass of 35 000 under pressure of CO₂ and N₂ were measured with two methods; in optical cell and with high pressure DSC apparatus. It was found that the pressure and the gas influenced the S - L - V curve. The S - L - V curve for system PEG 35 000/CO₂ has a temperature maximum and temperature minimum which was not observed in system PEG 35000/N₂. The course of the melting line for PEG/CO₂ is similar for both applied methods with small deviation of measured data. Melting point in presence of CO₂ was lowered for approximately 5-10 °C depending on pressure while under N₂ decrease in melting is negligible. Also sub- or supercritical state of CO₂ affected thermal behavior of PEG. Furthermore, with increasing the pressure of CO₂ the content of amorphous phase of PEG was significantly increased.

REFERENCES:

[1] Wiesmet, V.; Weidner, E.; Behme, S.; Sadowski, G.; Arlt, W.Measurement and modelling of high-pressure phase equilibria in the systems polyethyleneglycol (PEG)-propane, PEGnitrogen and PEGcarbon dioxide. *J. Supercrit. Fluids* **2000**, *17*, 1–12.

[2] Habraken, W. J. E. M.; Wolke, J. G. C.; Jansen, J. A. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. *AdV. Drug DeliVery ReV.* **2007**, *59*, 234–248.

[3] Lee, S. H.; Shin, H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. *AdV. Drug DeliVery ReV.* **2007**, *59*, 339–359.

[4] Reverchon, E.; Cleofe Volpe, M.; Caputo, G. Supercritical fluid processing of polymers: composite particles and porous materialselaboration. *Curr. Opin. Solid State Mater. Sci.* **2003**, 7, 391–397.

[5] Quirk, R. A.; France, R. M.; Shakesheff, K. M.; Howdle, S. M. Supercritical fluid technologies and tissue engineering scaffolds. *Curr. Opin. Solid State Mater. Sci.* **2004**, *8*, 313–321.

[6] Moneghini, M.; Kikic, I.; Voinovich, D.; Perissutti, B.; Filipovic-Grcic, J. Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterisation, and in vitro dissolution. *Int. J. Pharm.* **2001**, *222*, 129–138.

[7] Nalawade, S. P.; Picchioni, F.; Janssen, L. P. B. M. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. *Prog. Polym. Sci.* **2006**, *31*, 19–43.

[8] Ginty, P. J.; Whitaker, M. J.; Shakesheff, K. M.; Howdle, S. M. Drug Delivery Goes Supercritical. *Mater. Today* **2005**, *8*, 42–48.