A Real Time Simulator of a Supercritical Fluid Extraction (SFE) System

M. Roodpeyma,^{a,*} C. Street,^a S. Guigard,^{a,b} W. Stiver^a

^aSCFCan Inc., Edmonton, T6R 0G8, Canada ^bUniversity of Alberta, Edmonton, T6G 1H9, Canada *Corresponding author: maedeh.roodpeyma@scfcan.ca

1. Introduction

Simulators are important aids in the design and development of process applications and also serve as valuable training tools for operators. Simulators are all the more valuable for supercritical fluid extraction (SFE) processes due to the inherent non-linear character of supercritical fluid behaviour. For example, in a SFE process, increasing the heat energy input causes a temperature increase which will also impact pressure. Changes in temperature and pressure then result in a change in the supercritical fluid's density in a manner that is not easy to judge. Changes in temperature, pressure and density then cascade to impacts on component solubility, fluid behaviour, and mass transfer dynamics. All combined, it is difficult to anticipate the overall response of the system to a change in a single input in the absence of a simulator. This difficulty is even more important during the development of new supercritical fluid applications.

In this work, a customized Real Time (RT) simulator of a supercritical fluid extraction process is presented. The simulator is based on first principle mathematical equations, specifically mass and energy balances, fluid mechanics, mass transfer and thermodynamic equations.

The simulator presented is for a SFE process consisting of the following unit operations: an extractor, a separator, pumps, heat exchangers, and throttling valves (referred to as metering valves or MV). The graphical user interface (GUI) of the simulator has been designed and programmed in a flexible manner to allow the user to change different parameters associated with the stated unit operations before and during the simulation. This permits the user to explore the impact of the applied change in real time on process variables such as pressure, temperature, and extract concentration. Building on previous work^{1,2}, the work presented herein will use the developed simulator to provide an example of system response to a parameter change of a select unit operation. The example will illustrate the simulator's value in predicting responses that are not immediately obvious and highlight how the simulator can be used for development and training purposes.

2. Materials and Methods

The hydrodynamic and mass transfer models which the simulator is based on are detailed in previous work^{1,2}. Briefly, the hydrodynamic model is a combination of ordinary differential equations and algebraic equations requiring numerical integration. The mass transfer models are based on mass transfer equations and Chrastil's model for solubility³. The Span and Wagner Fundamental Equation of State⁴ is used to calculate carbon dioxide's properties.

The developed equations were numerically solved using Simulink[®] coupled with a program written in C to solve the Fundamental Equation of State relationships.

A customized GUI supports the simulator within the Matlab[®] framework (Figure 1). The simulator and GUI were programmed and designed to demonstrate main unit operations of a continuous SFE process. After the development of the simulator and its GUI, a series of simulations were conducted to explore the impact of different operating conditions in real time on various process variables, specifically pressure, temperature, and extract (oil) concentration.

						Ext	ractor	
		Extra	actor	Sep	parator		Pressure	
Pressure (MPa)		3		1		Temp.		
Temperatur	'e (K)	3	00		300		Level	
Level (m)		0	.2			Se	parator	
# of units			1		1		Pressure	
Length (m)		2.5		1.5		Conc.		
ID (m)		0.08		0.08		Metering Valv		
							MV1 Temp.	
Dynamic (mo	difiable	e) Sim	ulator C	Cond	litions —		-View	
Power in W:								
Power in W: Extractor	Separa	tor	MV1		MV2		Proce	\$1
Power in W: Extractor 3 360	Separa 360	itor	MV1 1400		MV2 1400		Proce Diagra	55
Power in W: Extractor 3 360 Slurry Pump	Separa 360 9 (% of	itor max)	MV1 1400 16	(MV2 1400	L/min	Proce Diagra	55 87 0
Power in W: Extractor 3 360 Slurry Pump CO2 Pump (Separa 360 9 (% of [% of n	ntor max) nax)	MV1 1400 16 8	(MV2 1400	L/min) Proce Diagra	85 10 10
Power in W: Extractor 3 360 Slurry Pump CO2 Pump (MV1 Openin	Separa 360 (% of (% of n ng (frac	nax) tion)	MV1 1400 16 8 0.3	(MV2 1400	L/min L/min	Proce Diagra Phas Diagra	e in
Power in W: Extractor \$ 360 Slurry Pump CO2 Pump (MV1 Openin MV2 Openin	Separa 360 9 (% of (% of n ng (frac	nax) nax) tion)	MV1 1400 16 8 0.3 0.4	(MV2 1400	L/min L/min) Proce Diagra Diagra	e in
Power in W: Extractor 3 360 Slurry Pump CO2 Pump (MV1 Openin MV2 Openin Manifold Ler	Separa 360 (% of (% of n ng (frac ng (frac ngth (m	ttor max) nax) tion) tion)	MV1 1400 16 8 0.3 0.4 4	(MV2 1400	L/min L/min	Proce Diagra Diagra Simula Help	e in
Power in W: Extractor 3 360 Slurry Pump CO2 Pump (MV1 Openin MV2 Openin Manifold Ler	Separa 360 9 (% of (% of n ng (frac ng (frac ngth (m	nax) nax) tion) tion)	MV1 1400 16 8 0.3 0.4 4	(MV2 1400	L/min L/min	Proce Diagra Diagra Diagra Simulat	
Power in W: Extractor 3 360 Slurry Pump CO2 Pump (MV1 Openin MV2 Openin Manifold Ler	Separa 360 (% of n (% of n ng (frac ng (frac ngth (n Selec	nax) nax) tion) tion) ct Size	MV1 1400 16 8 0.3 0.4 4	(MV2 1400	L/min L/min	Proce Diagra Phas Diagra Simula Help	
Power in W: Extractor \$ 360 Slurry Pump CO2 Pump (MV1 Openin MV2 Openin Manifold Ler	Separa 360 (% of n (% of n ng (frac ng (frac ngth (m Selec	ttor max) nax) ttion) ttion)	MV1 1400 16 8 0.3 0.4 4	(MV2 1400	L/min	Proce Diagra Phas Diagra Simula Help Simula Star Paus	e in to to
Power in W: Extractor 3 360 Slurry Pump CO2 Pump (MV1 Openin MV2 Openin Manifold Ler Manifold ID	Separa 360 (% of (% of n ng (frac ng (frac ng (frac ngth (m	ttor max) (tion)	MV1 1400 16 8 0.3 0.4 4 4		MV2 1400	L/min L/min	Proce Diagra Phas Diagra Simulat Star Paus Contin	

Figure 1. Simulator GUI

3. Results and Discussion

Figure 2 illustrates the system startup and dynamic response (the first 1000 s) to a generic set of initial conditions associated with the continuous SFE The results show an process. increase in extractor pressure that is far from a simple asymptotic approach to steady state. The extractor pressure overshoot is not intuitively obvious and is linked to the complex interdependence of extractor pressure on extractor temperature and on separator pressure and temperature.

At approximately 1000 s, the heat input to the metering valve between the extractor and separator was increased (MV1; from 1400 to 2800 W). This leads to an increased temperature within MV1 and the separator as one would expect. But surprisingly, it also leads to an extractor pressure increase. The

Figure 2. RT simulation results for startup and change in heat input to MV1

increased MV1 heating changes the CO_2 properties flowing through the valve, leading to a flow reduction through the valve. The lower flow through the valve increases the extractor pressure while decreasing the separator pressure. As seen in Figure 2, these changes in extractor pressure and separator pressure, result in an increase and decrease of oil concentration in extractor outlet and separator outlet, respectively.

4. Conclusions

In this work, the value of a real time simulator of a SFE process (or SFE processes in general) is demonstrated. The presented simulator and its GUI are applied to showcase a scenario in which system responses are difficult to anticipate due to the inherent non-linear behaviour of SFE processes. A customized and flexible SFE process simulator serves as an important tool for the development of SFE processes for a variety of applications and as a valuable training tool for operators.

References

- 1. M. Roodpeyma, PhD Thesis, Dept. of Civil & Env. Eng. University of Alberta, 2017.
- 2. C. Street, PhD Thesis, Dept. of Civil & Env. Eng. University of Alberta, 2021.
- 3. J. Chrastil, J. Phys. Chem., 1982, 86, 3016.
- 4. R. Span, W. Wagner, J. of Physical Chem. Ref. Data 1996, 25, 1509.