Microbial inactivation and drying by supercritical carbon dioxide

R. Zullia ${ }^{\text {a,* }}$, P. Andrigo ${ }^{\text {a }}$, F. Santi ${ }^{\text {a }}$, A. Zambon ${ }^{\text {a }}$, S. Spilimbergo ${ }^{\text {a }}$
${ }^{a}$ Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131, Padova (Italy)
*Corresponding author: Riccardo.zulli@unipd.it

1. Introduction

Food drying is an effective and well-known preservation technique that can be applied to a great variety of fresh foodstuff to increase their shelf life and safety. Among the numerous drying techniques, the use of supercritical carbon dioxide $\left(\mathrm{scCO}_{2}\right)$ has been recently investigated and promising results have been obtained for different fruits (apples ${ }^{1,2}$, mango and persimmon ${ }^{3}$), herbs (coriander ${ }^{4}$, basil ${ }^{5}$), vegetables (red pepper ${ }^{6}$, beetroot ${ }^{7}$) and poultry (chicken breast ${ }^{8}$). The process was also coupled with High Power Ultrasounds to achieve faster drying in coriander ${ }^{4}$ and chicken breast ${ }^{8}$.
Strawberries (Fragaria x ananassa) are one of the most consumed and appreciated fruit thanks to their characteristic flavour, texture and colour, together with their high amount of both nutritive and non-nutritive compounds (e.g. antioxidants, organic acids, vitamins) ${ }^{9}$. However, fresh strawberries are affected by quick spoilage due to the action of different microorganisms and oxidative-enzymatic deterioration, leading to limited shelf life. Fresh or frozen strawberries also show a high risk of foodborne pathogens like E.coli, Listeria monocytogenes and Salmonella enterica ${ }^{10,11}$.
This work aims at investigating the use of supercritical CO_{2} for the drying and microbial inactivation of strawberry slices as a case study.

2. Materials and Methods

Preliminary trials were addressed by using a semi-continuous drying plant ${ }^{12}$. The plant consists of a high visualization cell with an internal volume of $50 \mathrm{~cm}^{3}, \mathrm{CO}_{2}$ tank, a chiller reservoir and a thermostatic water bath to regulate the temperature in the vessel. Temperature, pressure and CO_{2} flow rate were fixed at $40^{\circ} \mathrm{C}$, 10 MPa , and $1.26 \mathrm{~kg} / \mathrm{h}$, respectively. The chamber was pressurized in about 10 min and depressurized in 20 min . Drying performances were monitored for a drying time of up to 6 h by calculating the weight loss and the moisture ratio of the strawberry slices, by means of the following equations:

$$
\begin{equation*}
\text { Weight loss }=\left(1-\frac{W_{\text {dry }}}{W_{\text {fresh }}}\right) * 100 \% \text { and } \quad \text { Moisture ratio }=\left(\frac{W_{\text {dry }}-W_{s m}}{W_{\text {fresh }}-W_{s m}}\right) * 100 \% \tag{1}
\end{equation*}
$$

where $W_{\text {fresh }}, W_{d r y}$ and $W_{s m}$ respectively represent the weight of the fresh sample, the dried sample and the solid matter (obtained as described in ${ }^{13}$).
Mesophilic bacteria, yeasts, and moulds were quantified through the standard plate count technique. Target pathogenic bacteria, E. coli, Salmonella spp. and Listeria monocytogenes were inoculated on the fresh samples (around 5.30, 5.47 and 7.19 Log CFU $/ \mathrm{g}$, respectively) and quantified after the drying procedure. Microorganism enumeration techniques are reported in our previous work ${ }^{1}$.

3. Results and discussion

Drying kinetics

Table 1 shows the drying kinetics in terms of weight reduction and moisture ratio. After 6 h of drying, strawberry slices lost around 90% of their initial weight, which corresponds to 2% of moisture content.
The moisture ratio profile was efficiently fitted with an exponential model (R -squared $=99.83 \%$), expressed by $M R=99.56 \exp (-0.00906 * t)$, where $M R$ is the moisture ratio and t is the drying time.

Table 1: Weight reduction and moisture ratio of strawberry slices during scCO2 drying $\left(40^{\circ} \mathrm{C}, 10\right.$ MPa , up to 6 h)

Drying time	Weight reduction $(\%)$	Moisture ratio $(\%)$
0	-	100.0 ± 0.0
1	40.3 ± 5.7	56.5 ± 6.4
3	72.3 ± 2.6	21.5 ± 2.1
6	90.1 ± 0.3	2.0 ± 0.0

Microbial inactivation

Table 2 reports the microbiological inactivation data of both natural flora (mesophilic bacteria and yeasts \& moulds) and inoculated pathogenic bacteria (E. coli, Listeria monocytogenes and Salmonella spp.) after 0 h (only pressurization and depressurization) and 6 h of drying. The obtained results for the mesophilic bacteria inactivation suggest that they are not very affected by the process up to 6 h . Anyway, if the weight loss is considered, the final count can be expressed as $1.51 \pm 0.43 \log$ CFU per g of fresh sample, with respect of $3.02 \pm 0.49 \log \mathrm{CFU} / \mathrm{g}$, which is the initial load. Yeasts and moulds are instead completely inactivated after the pressurization and depressurization steps. Regarding the inoculated pathogenic bacteria, after 0 h of treatment, the inactivation was already significant, especially for Listeria monocytogenes which seems to be the more sensitive to the treatment. After 6 h of drying, all the analyzed bacteria were underdetected ($<10 \mathrm{CFU} / \mathrm{g}$). Enrichment tests also demonstrated complete inactivation ($<1 \mathrm{CFU} / \mathrm{g}$).

Table 2: Inactivation on strawberry samples of mesophilic bacteria, yeasts \& moulds and inoculated pathogenic bacteria treated with scCO_{2} drying (means \pm standard deviation, in $\log \mathrm{CFU} / \mathrm{g}$) (U.D.: Under Detection, $<10 \mathrm{CFU} / \mathrm{g}$)

Microorganism	Initial count	$\begin{array}{c}\text { Final count, after 0 } \\ \text { min drying time }\end{array}$	$\begin{array}{c}\text { Final count, after } \\ \mathbf{3 6 0} \text { min drying time }\end{array}$		
Mesophilic bacteria	3.02 ± 0.49	2.48 ± 0.62	2.51 ± 0.43		
Yeasts and moulds	2.16 ± 0.29		U.D.	$]$ U.D.	Escherichia coli O157:H7
:---					
BRMSID 188					
NCTC12900 \& LFMFP 846					
Salmonella					
S. Thompson RM1987					
S. Typhimurium SL 1344					
S. Typhimurium LFMFP 884					
Listeria monocytogenes					
LMG 23192. LMG 23194 \& LMG 26484					

4. Conclusions

This study investigated the use of scCO_{2} for the drying and microbial inactivation of strawberries. Results demonstrated the drying efficiency of the method, being able to remove up to 98.0% of the initial water content of the fresh sample. Microbial inactivation studies also showed the safety of the final product, especially regarding yeasts and moulds and pathogenic bacteria (E. coli, Salmonella spp. and Listeria monocytogenes). A design of experiment should be performed to optimize the method in terms of temperature, pressure, treatment time and CO_{2} flow rate, and to evaluate the quality aspects of the dried products with respect to other techniques. Performances could be improved by using a drying plant with recirculation and regeneration of carbon dioxide, allowing higher flow rates, and hopefully lower treatment times, while still maintaining a contained cost. The use of High Power Ultrasounds should be also tested to study a possible synergic effect.

References

[^0]
[^0]: 1. A. Zambon, S. Bourdoux, M. F. Pantano, N. M. Pugno, F. Boldrin, G. Hofland,A. Rajkovic F. Devlieghere, S. Spilimbergo, Drying Technology, 2021, 39.
 2. I. Djekic, N. Tomic, S. Bourdoux, S. Spilimbergo, N. Smigic, B. Udovicki, F. Devlieghere, A. Rajkovic, LWT, 2018, 94.
 3. A. Braeuer, J. Schuster, M. Gebrekidan, L. Bahr, F. Michelino, A. Zambon, S. Spilimbergo, Foods, 2017, 6.
 4. S. Bourdoux, A. Rajkovic, S. De Sutter, A. Vermeulen, S. Spilimbergo, A. Zambon, G. Hofland, M. Uyttendaele, F. Devlieghere, Innovative Food Science \& Emerging Technologies, 2018, 47.
 5. A. Bušić, A. Vojvodić, D. Komes, C. Akkermans, A. Belščak-Cvitanović, M. Stolk, G. Hofland,, Food Research International, 2014, 64.
 6. A. Zambon, N. Tomic, I. Djekic, G. Hofland, A. Rajkovic, S. Spilimbergo, Food and Bioprocess Technology, 2020, 13.
 7. N. Tomic, I. Djekic, G. Hofland, N. Smigic, B. Udovicki, A. Rajkovic, Foods, 2020, 9.
 8. G. Morbiato, A. Zambon, M. Toffoletto, G. Poloniato, S. Dall'Acqua, M. de Bernard, S. Spilimbergo, The Journal of Supercritical Fluids, 2019, 147.
 9. U. Tylewicz, S. Tappi, C. Mannozzi, S. Romani, N. Dellarosa, L. Laghi, L. Ragni, P. Rocculi, M. Dalla Rosa, Journal of Food Engineering, 2017, 213.
 10. J. Ortiz-Solà, I. Abadias, P. Colàs-Medà, M. Anguera, I. Viñas, Postharvest Biology and Technology, 2021, 174.
 11. EFSA Journal, 2014, 12.
 12. A. Zambon, R. Zulli, F. Boldrin, S. Spilimbergo, The Journal of Supercritical Fluids, 2022, 180.
 13. J. de Bruijn and R. Bórquez,, Food Research International, 2014, 63.
