Elucidation of the CO₂ induced Gelation Mechanism of Biopolymer Solutions: Development of In-situ Methods

Imke Preibisch^a, Pavel Gurikov^b, Irina Smirnova^a

^aInstitute of Thermal Separation Processes, Hamburg University of Technology ^b Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg (Germany)

The CO_2 induced gelation is a promising gelation method for biopolymer solutions towards the production of biopolymer-based aerogels. It has been shown that the gelation induction by application of pressurized CO_2 to divers biopolymer solutions from, e.g. alginate, pectin, silk protein (with or without addition of gelation agents) results in the formation of homogenous and stable hydrogels which afterwards can be processed into aerogels by supercritical drying with CO_2 .

In this work the overall gelation process of the CO₂ induced gelation is divided into five formal steps [1]:

- 1) Dissolution of CO_2 into the aqueous biopolymer solution
- 2) Reaction of CO₂ and water resulting in formation of carbonic acid
- Dissociation of carbonic acid and drop of the pH value
- 4) pH induced dissolution of added gelation agents
- Gelation induction either directly by pH drop (step 3, without additional gelation agents) or by liberated gelation agents (step 4)

Throughout this work, in-situ measurement methods were developed to investigate the overall gelation mechanism as well as the single steps of the process:

- In-situ visual gelation observation to detect turbidity changes and therefore dissolution of gelation agent particles (step 1-4)
- In-situ pH measurement for temporal and spatial resolution of pH development via fluorescence measurement (step 1-3)
- In-situ measurement of CO₂ dissolution for evaluation of uptake equilibrium and kinetics via magnetic suspension balance (step 1)
- In-situ and ex-situ viscosity measurements of solution/gel to evaluate the total change of viscosity and gelation kinetics (in-situ: step 5/ ex-situ: step 1-5)

The evaluation of the developed methods was performed with the aqueous gelation system of amidated pectin with $CaCO_3$ added as an additional gelation agent. Via in-situ gelation observation and pH measurement it could be shown that mainly one-dimensional diffusion of CO_2 and its reaction products with water occurs inside the gelation sample, resulting in gel formation and drop of the pH value from the contact area with CO_2 into the liquid sample. This heterogeneity of gel formation indicates that gel formation itself is much faster than diffusion inside the sample. Further, the impact of the additional carbonate source (CaCO₃) directly effects the reaction system of CO_2 and water and has a direct impact on the pH development and the overall gelation process and its kinetics [1]. The knowledge obtained opens up opportunities for rational design of homogeneous hydrogels and aerogels using pressurized CO_2 as a gelation trigger.

[1] I. Preibisch, L. Ränger, P. Gurikov, I. Smirnova, In Situ Measurement Methods for the CO 2 -Induced Gelation of Biopolymer Systems, Gels. 6 (2020).

EMSF2021 – Bordeaux, France May 3-6, 2021