Direct CO₂ hydrogenation over FeAlO_x catalyst to produce high-yield C₅₊ gasolineand diesel-range fuels

Jaehoon Kim,^{a,b,c} Muhammad Kashif Khan^{a,b}

^aSchool of Chemical Engineering, ^bSchool of Mechanical Engineering, ^cSKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 440-746, Republic of Korea

Liquid hydrocarbons, such as olefins and paraffins, are indispensable chemicals that are widely used as transportation fuels and feedstocks in the synthesis of numerous commodity chemicals. Industrially, liquid hydrocarbons are produced by the distillation of crude oil in petroleum refineries. Recently, carbon dioxide (CO_2) has been recognized as a potential source for the production of liquid hydrocarbons. However, the high kinetic barrier and inherent inertness of CO₂ limit its C-C coupling reactions, consequently reducing the selectivity of CO_2 conversion for C_{5+} hydrocarbons. Herein, we present a single-type, bifunctional sodiumpromoted iron aluminum oxide (FeAlO_x) catalyst that promotes the formation of high-yield C_{5+} hydrocarbons with high selectivity for C_{5+} linear alpha olefins. The FeAlOx catalyst provides a high C_{5+} yield of 19.7% (including CO), with suppressed CO (7.2%, selectivity in the total product) and CH_4 (12.1%, selectivity in hydrocarbons only excluding CO) formation and a CO₂ conversion of 36.8%. In addition, An overall LAO selectivity of 52.4% (excluding CO) was achieved. The catalyst is highly stable for up to 450 h on-stream with negligible variations in the product composition, demonstrating its immense potential for practical applications. Reaction mechanisms and the origin of the excellent catalytic performance are discussed with reference to operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses for CO₂ and CO hydrogenation. Lastly, reaction results over Fe-based catalyst with different types of metal oxide promotors are presented.