Solubility of an Erlotinib hydrochloride drug in supercritical carbon dioxide: Experimental and modeling

Majid Bazaei¹, Seyedali Sajadian^{2,*}, Nadia Esfandiari¹, Bizhan Honarvar¹

¹ Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran. *corresponding Author, seyedali.sajadian@gmail.com

Abstract:

In this study, solubility of Erlotinib hydrochloride in SC-CO₂ was determined using a static method at pressures and temperatures ranging within 12–27 MPa and 308.2–338.2 K, respectively. Also, the solubilities of Erlotinib hydrochloride in SC-CO₂ + Ethanol, as a ternary system, were determined. The solubility of Erlotinib in the binary system was found to range from 1.31×10^{-6} to 1.02×10^{-4} mole fractions, while that in the ternary system exhibited solubility values between 3.80×10^{-5} and 9.54×10^{-4} mole fractions, indicating the significant effect of adding ethanol on the solubility of Erlotinib in SC-CO₂. In addition, the solubility of Erlotinib in both systems was correlated to empirical and semiempirical density-based models.

Keywords: Erlotinib hydrochloride, SC-CO₂, Ethanol, Semiempirical equations