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A problem of the extraction dynamics is ? searching for the partition function of a 
component concentration along the extractor. For this purpose let’s take following assumptions: 

1. a density of the liquid phase is constant at working parameters; 
2. a concentration of the extracted component in a solvent is small, so that a 

solvent density may be considered as constant; 
3. a solvent moves in one direction with a constant velocity. 

The material and thermal balance equation , equation of  extraction kinetics from the 
separate granules and heat transfer equation are used to describe the extraction dynamics. 

Since a mass of supercritical fluid is significantly larger than a mass of the extracted 
component the thermal effect of solution and swelling can be neglected. The extraction dynamics 
can be described by the material balance equation only: 
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=  is equation of extraction kinetics; C1 is a component 

concentration in intergranular space; τ is a time; ε denotes a porosity, mass of extracted 
component; U- a liniar velocity; D- a diffusion coefficient in intergranular space. 

Introducing new variables one obtains 
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length, X -current coordinate. Original conditions are 
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Boundary conditions for the extraction problem reads as 
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Zero conditions at the bound 1~ =X  is explained by that in a separator, following an extractor, 
occurs the isolation of extracted component. 
For the extractor of 1,5 m length and 0,35 m diameter are used the substance granules of ≈10-3m 

radius at D=10-9-10-10m2/s, D*=10-11-10-13 m2/s. Therefore ∗=
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 will change in limits 10-

5-10-8 m2/s 
So that Eq. (2) can be simplified to 
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The solution of boundary – value problem is searched at U
~ =1, 10, 50, 100. 

A change of concentration of extracted component in the intergranular space )~,
~

(
~

1 tXC at 

10~ =U is shown in Fig. 1. At 551,0~ =t  the extraction practically comes to an end.  
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Figure 1. A change of concentration of extracted component along the extractor at 
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