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Three models for the supercritical fluid (SCF) extraction of solids with different internal 

mass transfer mechanism were critically compared in this work. Internal mass transfer 
hypothesis included: transient diffusion; linear driving force (LDF); and desorption-
dissolution-diffusion (DDD). A sensitivity analysis was performed on the basis of Biot 
number (Bi –ratio between internal and external mass transfer resistances–) and characteristic 
external extraction time (τe –ratio between the external mass transfer resistance and residence 
time of the SCF in the extractor–). The negative effect of a 2-order of magnitude increase in 
Bi (1–100) in decreasing extraction rates was equivalent to that of a one-order of magnitude 
increase in τe (0.1–1). The LDF approximation could be used for the two other models under 
analysis if the total compounded porosity of the bed (ε) and particles (εp) was considered, a 
model-dependent definition of Bi was utilized (Bi=kfR/DsK for Fickean and LDF model, 

'Bi =kfR/Dp for DDD model), and the values of Bi were <100. The LDF model was applied to 
literature data on essential oil extraction from lavender flowers and pennyroyal leaves with 
supercritical carbon dioxide (SC-CO2) at 100 bar and 50 °C. Analysis of interstitial solvent 
velocity effects suggested that the convective mass transfer coefficient in the SCF is smaller 
than predicted by dimensionless correlations for packed beds operating with SCFs. 
 
INTRODUCTION 
 

Mass transfer parameters derived from data generated in a laboratory or pilot plant unit 
can aid in the scaling-up and design of industrial SCF extraction processes for solid substrates 
[1]. Parameter evaluation, in turn, depends on the implementation of appropriate mass transfer 
models for packed beds. Unfortunately, since models with different hypothesis about the 
limiting mass transfer mechanism can describe typical cumulative extraction plots (recovered 
solute versus extraction time) for botanical substrates treated with SCFs, it is difficult to 
discriminate between models based on their fitting capabilities for experimental data [1]. In 
this work, we expanded a previous contribution by considering alternative internal mass 
transfer mechanisms proposed in specialized literature. Hypotheses included Fickean [1] or 
parabolic concentration profiles of residual solute in the solid matrix [2], and a desorption-
dissolution-diffusion mechanism [3]. 
 
MATHEMATICAL MODELS 
 

Fickean model. This corresponds to the general model of del Valle et al. [1]. A 
differential mass balance equation was written for the SCF surrounding spherical particles of 
solid substrate in a packed bed (eqn. 1). The flux of solute transferred from the solid to the 
SCF (J) was estimated using equation 2, which assumes a constant partition coefficient of 
pseudo-solute (K=Cs/ *

fC ) between the solid matrix and SCF. Equation 3 represents solute 



 

 

diffusion within the solid particles, and finally, equations 4a-e represent the initial and 
boundary conditions of the system. 
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LDF model. Mass balance equation 1 applies in this case also. However, when the 

concentration profile of residual solute in the solid matrix is assumed to be parabolic, 
definition 2 and differential equation 3 can be replaced by equations 5 and 6, respectively [2]. 
In this case only average solute concentrations in the solid matrix ( sC ) are of interest. Initial 
condition 4a and boundary condition 4b were maintained in this case, and initial/boundary 
conditions 4c-e were replaced by equation 7. 
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DDD model. This model was described by in detail by Goto et al. [3]. Mass balance 

equation 1 applies, but a distinction is made in this case between the solute bound to the solid 
matrix (Cs) and in its pores (Cp), which are related by desorption kinetics. However, it was 
assumed that equilibrium is established instantaneously in the pores due to relatively fast 
desorption, which can be characterized by a constant partition coefficient of solute (K=Cs/ *

pC ) 
between the solid matrix and fluid phase within the pores. Under these assumptions, 
definition 2 and differential equation 3 were replaced by equations 8 and 9, respectively. 
Initial condition 4a and boundary condition 4b were also maintained in this case, but 
initial/boundary conditions 4c-e were replaced by equations 10a-c. 
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SENSITIVITY ANALYSIS 
 

The Fickean and LDF models were re-written in terms of a dimensionless time [θ (=t 
u/H) = 0], axial position [0 = ξ (=z/H) = 1], radial position [0 = δ (=r/R) = 1], and solute 
concentration in the SCF [0 = Y (=K Cf/Cso) = 1] and solid phase [0 = X (=Cs/Cso) = 1; 0 = X  
(= sC /Cso) = 1]. On the on other hand, dimensionless concentrations for the DDD model were 
re-defined as: Y=Cf/Co, for the SCF phase; Yp=Cp/Co, for the fluid phase within the pores; and 
X=Cs/Co, for the solid phase, where Co= 'K Cso/K and 'K =εp+K(1-εp). Table 1 summarizes the 
dimensionless differential mass balance equations, initial conditions, and boundary conditions 
for the two phases and the three models. 

Close examination suggests that the solutions of the differential equations in Table 1 
depend on the partition of solute between the phases (K, 'K ), bed and particle porosity (ε, εp) 
and two dimensionless parameters, namely: i) Biot number (Bi=kfR/DsK for Fickean and LDF 
model, 'Bi =kfR/Dp for DDD model), which represents the ratio between internal and external 
mass transfer resistances; and, ii) characteristic external extraction time (τe=u/kfapH, where 
ap=3/R), which represents the ratio between the external resistance to mass transfer and the 
residence time of the SCF in the extractor. A sensitivity analysis was performed on the basis 
of Bi and τe, which is summarized in Figure 1 for the LDF model (the base case was: K=20, 

ε=0.6, Bi=10, and τe=0.1). Extraction rates 
increased as a result of a decrease in either Bi 
or τe, but the effect of a one-order of 
magnitude change in τe (0.1-1) was similar to 
that of a 2-order of magnitude change in Bi 
(1-100). del Valle et al. [1] studied the effect 
of variations in K and ε by means of another 
dimensionless parameter (Γ=ε/(1-ε)K) that is 
related to the partition of solute between the 
SCF and solid phases under equilibrium 
conditions, and concluded that as Γ increases 
(and the solute is more tightly held by the 
solid matrix), the amount of solute carried 
out by the SCF decreases, thus 
      increasing extraction times. 



 

 

Table 1. Dimensionless differential mass balance equations, initial conditions, and boundary 
conditions for the SCF phase and solid matrix phases for the Fickean, LDF and DDD models. 
 

Model SCF phase Solid phase / Pores within solid phase 
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Figure 2 compares predictions of the Fickean, LDF and DDD models for two 
combinations of Bi and τe. Solute partition between the phases (K=20) and total porosity 
(εT=ε+εp(1-ε)=0.6) were kept constant in all cases. Two values of particle porosity were also 
compared for the DDD model (εp=0.2 and 0.375) that resulted in different values of bed 
porosity (ε=0.5 and 0.375, respectively). Predicted cumulative extraction plots were virtually 
the same for the three models under analysis for fast extractions (Fig. 2A), and small 
differences were observed for slow extractions (Fig. 2B). The LDF approximation was 
inappropriate for θ<60. This is in agreement with Do & Rice [4], who showed that residual 
radial solute concentration profiles can be assumed to be parabolic in shape only when 
θ/Biτe=3 (θ/Biτe=6 in Fig. 2B). On the other hand, Goto et al. [3] suggested that the LDF is 
appropriate only when Bi<10. Figure 2B also suggests that extraction rate improves slightly 
as a result of an increase in εp for long extraction times. It can be concluded that the LDF 
approximation can be applied for the two other models under analysis provided that the total 
porosity of the bed and particles (εT) is considered, that a model-dependent  



 

 

 
used, and that values of Bi are not too large. To illustrate the effect of the definition of Bi, an 
additional simulated extraction plot is included in Figure 2A for the DDD model and K=20, 
εp=0.2, ε=0.5, τe=0.2, and 'Bi =200 (corresponding to Bi=kfR/DsK=10). 
 
 
FITTING OF LITERATURE DATA 
 

The use of the LDF model for fitting experimental cumulative extraction plots is 
illustrated in Figure 3 for selected literature data on essential oil extraction with SC-CO2. Data 
correspond to studies on the effect of solvent ratio for the extraction of camphor and fenchone 
from lavender (Lavandula stoechas subspecies C. Boiss) flowers [5], and of essential oils 
from pennyroyal (Mentha pulegium L.) leaves [6]. Both sets of experiments were performed 
with SC-CO2 at 100 bar and 50 ºC. Partition parameters (K) were estimated by plotting the 
essential oil yield versus specific solvent consumption for each one of the two experimental 
sets, and calculating the slope of the initial straight portion [7]. Values of K were 7.6 for 
lavender, and 16.6 for pennyroyal. We proceeded to estimate best-fit values of kp, 
5kfDeK/(kfR+5DeK), for each condition. Dimensionless correlations for the convective mass 
transfer coefficient in the SCF phase (kf) have the general form: 

0.33
Sc

n
ReSh )(N )(N aN =  (11) 

where NSh (2kfR/D) is the dimensionless Sherwood number, NRe (2ρUR/µ), the dimensionless 
Reynolds number, and NSc (µ/ρD), the dimensionless Schmidt number. The physical 
properties of the loaded SCF phase (ρ, µ, D) were estimated using the procedure proposed by 
del Valle et al. [8] using PM=885.4 g/mol and Vc=3200 cm3/mol for a typical solute in plant 
essential oils [7]. When the solvent conditions remain unchanged, equation 11 reduces to: 

1-nn'
f R  Uak =  (12) 

In a second stage, best-fit values of kp for each experiment were used to determine best fit 
values of 'a  (0.89), n (1.82), and substrate-dependent De (2.5x10-9 m2/s for lavender, 3x10-9 
m2/s for pennyroyal). Values of ‘n’ in dimensionless correlations for mass transfer 
coefficients in packed beds range from 0.6 [9] and 0.83 [10]. Best-fit values of kf estimated 
using the aforementioned procedure ranged 0.84−4.3x10−6 m/s, which are about 10 times 
smaller than predicted using the correlation of Tan et al. [10], which has been suggested for  



 

 

 
 
the extraction of vegetable substrates with SC-CO2 in a packed bed [8]. Model fitting was 
obviously worst for the data of Akgün et al. [5] than that of Reis-Vasco et al. [6] (cf. Fig. 3). 
The values of Bi ranged from 0.30 to 1.0 for lavender flowers and from 0.07 to 0.25 for 
pennyroyal leaves, for which the LDF approximation is adequate regardless of the internal 
mass transfer mechanism. 
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