HIGH PRESSURE VAPOR LIQUID EQUILIBRIUM FOR CARBON DIOXIDE + ETHANOL + 2-BUTANONE SYSTEM

Tomoya TSUJI*, Masatoshi SAKAI, Toshihiko HIAKI
College of Industrial Technology, Nihon University
1-2-1 Izumicho Narashino 275-8575 Japan
*corresponding author: E-mail tsuji@ dic.cit.nihon-u.ac.jp, Fax +81-47-474-2579

Abstract

Vapor-liquid equilibrium was measured for three binary systems, carbon dioxide + ethanol, carbon dioxide + 2-butanone, and ethanol + 2-butanone, and a ternary system, carbon dioxide + ethanol +2 -butanone, at 313.2 K . A circulation type apparatus was used in case of the high pressure systems, carbon dioxide + ethanol, carbon dioxide +2 -butanone, and carbon dioxide + ethanol + 2-butanone, and a flow type one in case of low pressure system, ethanol + 2-butanone. The binary data measured were correlated with improved Peng-Robinson equation of state combined with Adachi-Sugie type mixing rule. Using the optimized binary parameters in the mixing rule, the phase equilibrium was predicted for the ternary system.

INTRODUCTION

Supercritical carbon dioxide $\left(\mathrm{CO}_{2}\right)$ has been paid much attention to be a new type of earth-friendly solvent. Many researchers have proposed various separation processes using supercritical carbon dioxide [1]. Especially, extraction of biomass ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ from fermentation is expected to establish a sustainable process. Though the knowledge of vapor-liquid equilibrium (VLE) is essential for the design and the operation for the process, few data are available except for the system containing, $\mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, and water. In this study, we focused on a byproduct, 2-butanone $\left(\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}\right)$, and measured the VLE for three binary systems and a ternary system containing $\mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, and $\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ at 313.2 K . The experimental data for the three binary systems were correlated with improved Peng-Robinson equation of state combined with Adachi-Sugie type mixing rule. Using the optimized binary parameters, the VLE was predicted for the ternary system.

EXPERIMANTAL

Materials

CO_{2} used in this study was purchased from Showa Tansan Co. Ltd. Tokyo, and the mass purity was no less than $99.99 \% . \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ used were special grade reagents supplied from Wako Puer Chemical Industries Ltd., Osaka, Japan, and the mass purities were 99.5 and 99.0%, respectively. All reagents were used as received.

Equipment and Procedures

VLE was measured for three binary systems, $\mathrm{CO}_{2}(1)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(2), \mathrm{CO}_{2}(1)+$ $\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3), and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2) $+\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3), and a ternary system, CO_{2} (1) + $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(2)+\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3), at 313.2 K . Two different types of apparatus were employed corresponding to the experimental pressure range. One is a circulation type apparatus for the system containing CO_{2} (1), and the other is a flow type for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (1) $+\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3) system. The principle and the experimental procedures have been already described [2,3]. Figure 1 shows the schematic diagram of a circulation type apparatus. The apparatus was mainly designed by AKICO Co., Tokyo, and some assemblies were improved in our laboratory [2]. The equilibrium cell was made of stainless steal, and the inner volume was about $500 \mathrm{~cm}^{3}$. The cell was held in the air chamber, and the temperature was maintained to be 313.2 K within the precision of 0.1 K . The three windows were assembled with the cell to observe phase equilibrium. In the measurement, the liquid sample was fed into the cell, and successively liquidated CO_{2} (1) was loaded up to the desired pressure. In case of the ternary system, the mole ratio of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2): $\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3) in the feed solution was set to be about 50:50 and 25:75. Two magnetic driven pumps were equipped with the cell to agitate the vapor and liquid phase. The pressure was measured by a precise Burdon tube gauge (Nagano Keiki Co. GP35-141, Tokyo) with the precision of 0.05 MPa . Temperature was measured with a platinum resistance thermometer with the precision of 0.1 K . After ensuring the constant temperature and pressure, a portion of the samples, the volume from 1 to $10 \mathrm{~cm}^{3}$, were individually picked up from the vapor and liquid phase by the sampling valve. The samples were heated and expanded to vaporize, and the compositions were determined by a gaschromatograph with a thermal conductivity detector. The gaschromatograph used was GL Science GC-323TCD, and the packing in the column (stainless tube, i.d. 2.20 mm x 5.0 m long) was Porapak Q 80/100 mesh.

Figure 2 shows the schematic diagram of a flow type apparatus. The apparatus

1:Precise Bourdon Tube Gauge 2:Heater 3:Sample Loader 4:Pt Resistance Thermometer 5:CO2 Cylinder 6:Agitator 7:Safety Valve 8:Eqilibrium Cell 9:Circulation Pump 10:Sampling Valve 11:Air Chamber 12:Bourdon Tube Gauge 13:Surge Tank 14:Calibration Cell 15:Six-way Valve 16:Gaschromatograph 17:He Cylinder

Figure 1. Schematic diagram of a circulation type apparatus
constructed in our laboratory [3]. The flow cell was made of Pyrex? grass, and the inner volume is about $200 \mathrm{~cm}^{3}$. In the measurement, the sample solution was loaded into a sample cell. A stirrer tip, driven by the magnetic stirrer with the water proofing assemblies, was in the cell to agitate the solution. The cell was held in a water bath maintained to be a desired temperature. The temperature was measured by thermistor thermometer (Technoseven D641, SXA-33, Yokohama, Japan) within the precision of 0.01 K . The helium, with a constant flow rate, was slowly passed through the cell. The helium, saturated with the solvent vapor, was introduced into a gas chromatograph with a thermal conductivity detector. The gaschromatograph used was GL Science GC-380TCD, and the packing in the column (grass tube, i.d. $2.0 \mathrm{~mm} \times 12 \mathrm{ft}$. long) was Gasukuropak 54 80/100 mesh.

In this study, the composition in the liquid phase was regarded as that at the preparation, and that in the vapor phase was evaluated by the partial pressure. The partial pressure can be estimated from the peak height in the gaschromatogram. When the peak height of the pure solvent at some temperature was the same as that of the mixture at the experimental temperature, the vapor pressure of the pure solvent was assumed to be the partial pressure of the mixture.

RESULT AND DISCUSSION

Ensuring the reliability of the experimental data, we first measured VLE for CO_{2} (1) $+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2) system. Figure 3 shows the experimental VLE for $\mathrm{CO}_{2}(1)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2) at 313.2K. In the figure, the data of Yoon et al. [4], Suzuki et al. [5], and Jennings et al.[6] were also illustrated. As shown in the figure, some researcher reported the VLE around the experimental temperature. Though Yoon et al. [4] have measured the VLE at the same temperature, the experimental data did not agreed in the liquid composition. However, the experimental data showed the same tendency with those of Suzuki et al. [5] and Jennings et al. [6]. Comparing with the data of literature, those of Yoon et al. [4] seem to be have some discrepancies with other data.

In the figure, the mole fraction of CO_{2} in the liquid phase was drastically

1:Thermistor Thermometer 2:Pt Resistance Thermometer 3:He cylinder 4:Gas Dryer 5:Heat Exchanger 6:Mass Flow Controller 7:Flow Cell 8:Magnetic Stirrer 9:A gitator 10:Water Bath 11:Six-way Valve 12:H eater 13:Air Chamber 14:Gaschromatograph 15:F lowmeter

Figure 2. Schematic diagram of a flow type apparatus
changed at the pressure higher than 6.89 MPa. Otherwise, that in the vapor phase had a maximum at 5.10 MPa . The critical point of CO_{2} (1) $+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2) system seems to exist around $\mathrm{x}_{1}=0.965$, and $\mathrm{P}=8.2 \mathrm{MPa}$ at 313.2 K .

Figure 4 shows the experimental VLE for CO_{2} (1)+ $\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3) system at 313.2 K . The data were not available in the literature. As shown in the figure, the mole fraction of CO_{2} was monotonously increased with the pressure, and reached the critical point. Thus, the solubility of CO_{2} in liquid phase tended to be proportional to the pressure. Otherwise, the mole fraction of CO_{2} in the vapor phase had a maximum at 6.04 MPa . The critical point of CO_{2} (1) $+\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3) system seems to exist around $\mathrm{x}_{1}=0.983$, and $\mathrm{P}=$ 8.2 MPa at 313.2 K . Comparing with CO_{2} (1) $+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(2)$ system, CO_{2} is well dissolved in $\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ in the lower pressure range. However, the solubility of CO_{2} for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ became larger near the critical point.

Figure 5 shows the VLE for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2) $+\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3) system at 313.15 K . For the system, Garriga et al. [7] reported just the bubble point pressure at the same temperature. In the figure, the data of Garriga et al. [7] were also illustrated. As shown in the figure, the experimental bubble point pressures were higher than those of Garriga et al. [7]. So, the thermodynamic consistency test was adopted for the experimental data. The test employed was Herington's area test by use of activity coefficients [8]. The test indicates that the experimental VLE was consistent.

In the figure, the normal boiling point of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2) is higher than that of $\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3). However, the vapor pressure of $\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3) was larger than that of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2) at the experimental temperature. As shown in the figure, the azeotropic point can be seen around $\mathrm{x}_{2}=0.41, \mathrm{P}=0.0265 \mathrm{MPa}$.

Figure 6 shows the VLE for $\mathrm{CO}_{2}(1)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2) $+\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3) system at 313.15 K . In the figure, the feed planes at the preparation were also illustrated. In the ternary systems, the pressure dependence of the liquid composition was similar to that of $\mathrm{CO}_{2}(1)$ $+\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (2) system. To make clear the distribution of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ for the vapor and liquid phase, Figure 7 shows the pressure dependence of CO_{2} free mol fraction of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. In case of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2) : $\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3) $=25: 75$ at the preparation, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ was distributed in the vapor phase in the whole range of pressure. In case of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2): $\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3) $=25: 75$ at the preparation,

Figure 5. VLE for the $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (1) $+\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$
(3) system at 313.15 K $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ was distributed to the liquid phase at the pressure lower than 6.51 MPa . Otherwise, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ was distributed to the vapor phase at the pressure higher than 6.51MPa. Thus, a singular point, showing no selectivity, was existed except for the azeotropic point and the critical point.

The experimental data were correlated with improved version of Peng-Robinson equation of state proposed by Stryjek et al. (PRSV eq.) [9].

Figure 6. VLE for the CO_{2} (1) $+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2) $+\mathrm{CH}_{3} \mathrm{COC}_{2} \mathrm{H}_{5}$ (3) system at 313.15 K

$$
\begin{equation*}
P=\frac{R T}{v-b}-\frac{a}{v(v+b)+b(v-b)} \tag{1}
\end{equation*}
$$

The mixing rules employed were Adachi-Sugie type ones [10].

$$
\begin{equation*}
a=\sum_{i} \sum_{j} x_{i} x_{j}\left[1-k_{i j}+l_{i j}\left(x_{i}-x_{j}\right)\right]\left(a_{i} a_{j}\right)^{0.5} \quad \text { (2) } b=\sum_{i} \sum_{j} x_{i} x_{j} \frac{b_{i}+b_{j}}{2} \tag{3}
\end{equation*}
$$

where the binary parameters, $k_{i j}$, and $l_{i j}$, were optimized by using the experimental binary data. The calculation results are shown in Figures 3, 4, and 5. The calculation agreed well with the experimental binary data.

Using the optimized parameters, the VLE was calculated for the ternary system. Figures 6 , and 7 show the calculation for the ternary system. Though some degree of discrepancy can be seen in the figures, the calculation shows the same tendency with the experimental data.

REFFERNCES

[1]Arai, Y., Sako, T., Takebayashi, Y., "Supercritical Fluids -Molecular Interactions, Physical Properties, and

Figure 7. Distribution of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (2) for the vapor and liquid phase

New Applications-", Springer, Berlin, 2002 [2]Hiaki, T, Miyagi, H., Tsuji, T., and Hongo, M., J. Supercritical Fluids, Vol. 13, 1998, p. 23 [3] Tsuji, T., Hiaki, T., Hongo, M., Ind. Eng. Chem. Res., Vol. 37, 1998, p. 1685 [4] Yoon J. H., Lee, H. S., Huen, L., J. Chem. Eng. Data, Vol. 38, 1993, p. 53 [5] Suzuki, K., Sue, H., Itou, M. Smith, R. L., Inomata, H., Arai, K., Saito, S., J. Chem. Eng. Data, Vol. 35, 1990, p. 63 [6] Jennings, D. W., Lee, R. J., Teja, A. S., J. Chem. Eng. Data, Vol. 36, 1991, p. 303 [7] Garriga, R., Sanchez, F., Perez, P., Gracia, M., J. Chem. Thermodyn., Vol. 28, 1996, p. 567 [8]Herington E. F. G., J. Inst. Petrol., Vol. 37, 1951, p. 457 [9]Stryjek, R., Vera, J. H., Can. J. Chem. Eng. Vol. 64, 1986, p. 323 [10]Adachi, Y., Sugie, H., Fluid Phase Equilibria, Vol. 28, 1986, p. 103

