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Four main types of binary fluid phase diagrams and available experimental data on binary 
systems were used as a starting point for derivation of the systematic classification of binary 
complete phase diagrams by the method of continuous topological transformations. This 
method and the classification of binary phase diagrams, containing the boundary versions of 
phase diagrams with ternary nonvariant points, were applied to derive the main types of fluid 
and complete phase diagrams for ternary systems with one volatile component and 
immiscibility phenomena in two constituent binary subsystems. The results gained from the 
analysis of derived fluid and complete phase diagrams of ternary systems are represented. 
 

 
INTRODUCTION 

The theoretical derivation of phase diagrams, developed by van der Waals and his 
school at the end of XIX - beginning of XX century [1], was made by a topological method 
after the main features of a geometry of thermodynamic surfaces (van der Waals surfaces) 
were obtained from limited calculations (available at that time) using the equation of state. 
Since the first publication of Scott and van Konynenburg in 1970 on global phase behavior of 
binary fluid mixtures [2] the classical approach to the derivation of phase diagrams from the 
equations of state has changed from the topological method to the analytical method. 
However, such calculations do not permit study of phase equilibria with solid phases because 
a general liquid-gas-solid equation of state is absent. 

The main objectives of this presentation are to demonstrate that the topological 
method on the level of schemes of phase diagrams (not on the level of thermodynamic 
surfaces as it was in the method of van der Waal's school) can be used for derivation of the 
complete phase diagrams, which describe not only fluid equilibria but also all the equilibria 
with solid phase in a wide range of temperature and pressures, and to show some results of 
such derivation. 

The method of continuous topological transformation [3] is based on the premise that 
each type (or topological scheme) of phase diagram can be continuously transformed into 
another type through the boundary version of that phase diagram, which has the properties of 
both neighboring types and contains the equilibria possible only in the systems with the 
higher numbers of components. It was established for the binary fluid phase diagrams by 
investigations of various equations of state and the boundary versions for such fluid mixtures 
can be borrowed from the global phase diagrams. Modifications of stable fluid phase 
equilibria in presence of a solid phase do not change the type and topological scheme of fluid 



phase and originate in the boundary versions of binary phase diagram with nonvariant ternary 
critical points where the solid phase takes part in equilibria. As a result of such modification, 
a part of fluid equilibria (for instance, the parts of immiscibility regions and/or critical curves) 
is suppressed by solidification of the nonvolatile component and transforms into the 
metastable equilibria. 
 
CLASSIFICATION OF BINARY COMPLETE PHASE DIAGRAMS 
 Scott and Konynenburg [2] classified six types (types I-VI) of binary fluid phase 
behavior, the type VII was added later by Boshkov [4]. However, this traditional classification 
includes only four main types of binary phase diagram (I, V, V and VII) with different 
combinations of fluid phase equilibria. Three other types (II, III and IV) are repeated these 
combinations and show the result of solid phase interference in fluid equilibria of types V, VI 
and VII. Therefore only the mentioned four types were used as the main types of fluid phase 
behavior in our classification (Figure 1) where they form four horizontal rows of the 
diagrams, designated as rows a (type I), b (type VI), c (type VII) and d (type V).  

The systematic classification of complete phase diagrams (P-T projections) for binary 
systems, shown in Figure 1, was derived using the method of continuous topological 
transformation [3], consists of four horizontal rows (a, b, c, d) and three vertical columns (1, 
1'(1''), 2) and is complete within the framework of the definite limitations [5]. 

Complete phase diagrams in the row a are characterized by a fluid phase behavior 
without liquid-liquid immiscibility phenomena. A limited immiscibility region, where the 
three-phase equilibrium L1-L2-G ends in the critical points N (L1=L2-G) both at high and low 
temperatures (in stable or metastable conditions), is a permanent element of complete phase 
diagrams in the row b. Two three-phase immiscibility regions L1-L2-G of different nature are 
the constituents of complete phase diagrams in the row c. Three-phase immiscibility region 
with two critical endpoints N (L1=L2-G) and R (L1=G-L2) of different nature can be found in 
any complete phase diagrams of the row d. Three horizontal rows b, c and d consist of two 
lines of phase diagrams because there are the experimental examples for phase diagrams of 
the both lines in the row d. 

Three vertical columns (right, central, and left) of complete phase diagrams reflect the 
various features of solid-fluid equilibria. The complete phase diagrams, which show four 
main types of fluid phase behavior and lack critical or immiscibility phenomena in solid-
saturated solutions, are found in the left column. The central and right columns contain 
diagrams with nonvariant points where critical phenomena occur in equilibrium with a solid 
phase. So-called "supercritical fluid and fluid - solid" equilibria are absent in the diagrams 
from central column, but they appear in the diagrams of type 2 from the right column.  

Diagrams from Figure 1 included in boxes and separated of neighboring complete phase 
diagrams are the boundary versions of binary phase diagrams. They contain the special points 
representing nonvariant equilibria in ternary systems and demonstrate continuity of 
topological transformation of one binary type of a complete phase diagram into another.  

 
DERIVATION OF FLUID AND COMPLETE TERNARY PHASE DIAGRAMS 
 If the phase behavior of the constituent binary subsystems is known, the task of 
constructing a topological scheme for a ternary system translates into the finding of new 
nonvariant equilibria. These equilibria result from the intersection of monovariant curves 
originated at nonvariant points of the constituent binary subsystems. While passing from one 
binary subsystem to another, the phase diagrams of the binary subsystems must undergo 
continuous topological transformations in the three-component region of composition. This  



 

Figure 1: Systematic classification of binary complete phase diagrams (p-T projections). 
The diagrams shown in frames are the boundary versions. Filled dots are nonvariant points in one- 

and two-component systems (TA, TB and KA, KB – triple (L-G-S) and critical (L=G) points of pure 
components A and B; eutectic point E (L-G-SA-SB); L (L1-L2-G-SB); critical endpoints: N(N’) (L1=L2-G), R 
(L1=G-L2), P (L=G-S), Q (L=G-S or L1=L2-S), M (L1=L2-S); open dots are nonvariant equilibria of ternary 
systems (NL(N’L) (L1=L2-G-S); PR (L1=G-L2-S); double critical endpoints N’N (L1=L2-G), PQ (L=G-S), 
MQ (L1=L2-S); tricritical point NR (L1=L2=G)) in the boundary versions of phase diagram (in frames). Thin 
lines are monovariant equilibria L-G and L-S of pure components A and B; dashed lines are critical curves 
L=G and L1=L2; heavy lines are monovariant curves (non-critical) of binary system; dotted lines are the 
metastable parts of monovariant curves in binary systems. 



process may be imagined as a continuous phase diagram transformation of quasi-binary 
sections of the ternary system with a constant volatile component (water in the case of water-
salt systems) and a continuously changing non-volatile component (salt component in the case 
of water-salt systems) from one non-volatile component to another. This constitutes so-called 
“quasi-binary approach” to the ternary phase equilibria. 
 If the phase diagrams of the binary subsystems are present in Figure 1, then all the 
steps of the topological transformation between these diagrams are also shown on the same 
figure as a set of complete phase diagrams corresponding to the quasi-binary sections. Such 
sets include the boundary versions of phase diagrams, which show ternary nonvariant points 
that should appear in the studied three-component systems [5]. 

A more systematic approach to the global phase behavior of ternary systems should 
start from a derivation of the main types of ternary fluid phase diagrams and following 
consideration of how these phase diagrams are modified by the presence of the solid phase of 
the nonvolatile components. A description of this approach is available elsewhere [5, 6]. Here 
we can give only an outline of some results that were gained from the analysis of fluid and 
complete phase diagrams for the ternary systems with one volatile and two nonvolatile 
components where two binary subsystems with volatile component are complicated by 
immiscibility phenomena and the third binary subsystem belongs to type 1a.  

There are 6 major classes of such ternary fluid mixtures that can be referred to as 
ternary class I with the following combination of constituting binary subsystems (1a-1b-1b), 
ternary class II -  (1a-1c-1c), ternary class III - (1a-1d-1d), ternary class IV -  (1a-1b-1d), 
ternary class V -  (1a-1b-1c) and ternary class VI - (1a-1c-1d) [5].  

The derivation by the method of continuous topological transformation was made on 
the assumption that the immiscibility regions spread from two binary subsystems can either 
merge in the three-component range of composition or be separated by a miscibility region. A 
continuous topological transformation of one topological type of ternary fluid phase diagram 
into another in the frame of one ternary class was carried out by merging together the ternary 
nonvariant points and by tangency of one monovariant curve to another in accordance with 
the rules formulated in [5]. The result of derivation is 39 schemes of ternary fluid phase 
diagrams. 

Until the equilibrium L-G-S intersects the three-phase immiscibility region L1-L2-G, 
the stable fluid phase equilibria are not changed and correspond to the main types of fluid 
phase diagram. An appearance of equilibrium L1-L2-G-S (the nonvariant point L in binary 
systems and the monovariant curve in ternary system) leads to transition of a part of 
immiscibility region into metastable conditions. An increase in temperature of solid phase 
interference in immiscibility and critical equilibria increases the metastable part of 
immiscibility region and initiates an appearance of supercritical fluid equilibria and a 
transition of binary or quasi-binary phase diagrams from type 1 to type 2.  

Figure 2 shows several examples of ternary complete phase diagrams represented as 
five T-X* projections of ternary phase diagrams for each of six ternary classes I-VI, derived 
in assumptions that the solid phases of nonvolatile components form a solid continuous 
solution and the temperatures of binary nonvariant points L (L1-L2-G-S) and M (L1=L2-S) are 
equal.  

The following general regularities of phase behavior in ternary mixtures can be 
formulated from the analysis of derived ternary phase diagrams, shown in Figure 2: 

1. Ternary immiscibility regions spreading from the binary subsystems can either be 
terminated by nonvariant points and disappear or merge with another immiscibility region. 
Disappearance of the immiscibility region of type b occurs in the double critical endpoint  



 

Figure 2: T-X* projections (schemes) of some complete phase diagrams for ternary 
systems with one volatile component (A) and immiscibility phenomena in two binary 
subsystems (A-B, A-C). 
X* denotes the relative amounts of the non-volatile components (B, C) in ternary solutions 
(X*=XB/(XB+XC)), where XB,C = mB,C/(mA + mB + mC). 
 

Symbols for stable and metastable (m/s) nonvariant (points) and monovariant (lines) 
phase equilibria in binary and ternary systems: 

         - Q ((L1=L2-S)           - R m/s (L1=G-L2)                - PQ (L=G-S)                         -  (L1-L2-G-S) + (L1=L2-S) 
       - R (L1=G-L2)            - N m/s (L1=L2-G)                - N’N (L1=L2-G)                     -  (L1-L2-G-S) 
       - N (L1=L2-G)            - N’N m/s (L1=L2-G)            - NL (L1=L2-G-S)         -  (L1=L2-G) or (L1=G-L2) 
       - P (L=G-S)                - NR m/s (L1=G=L2)            - PR (L1=G-L2-S)       -  (L1=L2-S) or (L=G-S)  
       - L (L1-L2-G-S)          - NR (L1=L2=G)                    - MQ (L1=L2-S)                      - m/s (L1=L2-G) or (L1=G-L2) 
       - L (L1-L2-G-S) + M (L1=L2-S) 



(DCEP) N'N (L1=L2-G) or in the nonvariant critical point LN (L1=L2-G-S). The immiscibility 
region of type d ends in the tricritical point (TCP) NR (L1=L2=G). The immiscibility region of 
type c can disappear in the TCP NR (L1=L2=G) only after continuous transformation into 
immiscibility region of type d through the DCEP N'N (L1=L2-G).  

In the case of two separated immiscibility regions joining into a single one, two 
monovariant critical curves of same nature spreading from the different binary subsystems 
form a single critical locus without new nonvariant points. DCEP N'N (L1=L2-G) appears on 
the critical curves L1=L2-G which intersects in the TCP NR (L1=L2=G) with the critical curve 
L1=G-L2 spreading from another binary subsystem.  

2. The occurrence of two-phase holes L-G (completely bounded by a closed-loop 
critical curve L1=L2-G) in the three-phase immiscibility region was established 
experimentally for ternary systems with two binary subsystems of type d [7]. However it is 
felt that the two-phase hole could be found in ternary systems with binary subsystems of type 
c and even type b.  

3. The monovariant curve L-LN (L1-L2-G-S) originated in binary subsystem of types 
1b', 1c', or 1d' is located at temperature range below the temperature of point L. The low-
temperature part of ternary three-phase immiscibility region located on the T-X* projection 
below the curve L-LN is metastable. The monovariant curves L-PR or L-LN (L1-L2-G-S) 
originated in binary subsystems of types 1b'', 1c'', or 1d'' are located at higher temperatures 
than the binary point L and the high-temperature part of ternary three-phase immiscibility 
region is metastable in the range of composition (X*) from binary subsystem to ternary 
critical points LN and PR. 

4. Transition from metastable into stable equilibria of a three-phase immiscibility 
region spreading from binary subsystem of types 2c' or 2d' starts from the high-temperature 
equilibrium PR (L1=G-L2-S) and terminates in the low-temperature point LN (L1=L2-G-S). 
The same transition of a three-phase immiscibility region spreading from binary subsystem of 
types 2c'' or 2d'' is terminated by an appearance of the high-temperature ternary point PR 
(L1=G-L2-S) and the high-pressure DCEP MQ (L1=L2-S).  

5. If three-phase immiscibility region spreading from the binary subsystem of type 2 
disappears in metastable conditions of the ternary system, the DCEP PQ (L=G-S) should 
appear in stable equilibria.  

 
ACKNOWLEDGEMENTS 

This work was supported by the Russian Fondues of Basic Research under Grant no. 
01-03-32770 and by the INTAS Project No. 00-640. 

 
REFERENCES: 
[1] VAN DER WAALS, J.D. and KOHNSTAMM, P., Lehrbuch der Thermodynamik, Barth, 
Leipzig, 1912   
[2] SCOTT, R.L. and VAN KONYNENBURG, P.N., Faraday Discuss. Chem. Soc., Vol. 49, 
1970, p.87 
[3] VALYASHKO, V.M., Phase equilibria and Properties of Hydrothermal Systems (Russ.), 
Nauka, Moscow, 1990 
[4] BOSHKOV, L.Z., Dikl. Akad. Nauk SSSR, Vol. 294, 1987, p.901 
[5] VALYASHKO, V.M., Phys. Chem. Chem. Phys., Vol. 4, 2002, p.1178 
[6] VALYASHKO, V.M., Pure & Appl. Chem., Vol. 74, 2002, p.1871 
[7] PETERS, C.J. and GAUTER, K., Chem. Rev., Vol. 99, 1999, p.419 
 


