

Fractionnement par CO₂ supercritique

Christelle CRAMPON, Elisabeth BADENS

Equipe Procédés et Fluides Supercritiques

Laboratoire de Mécanique, Modélisation et Procédés Propres – M2P2 UMR 7340

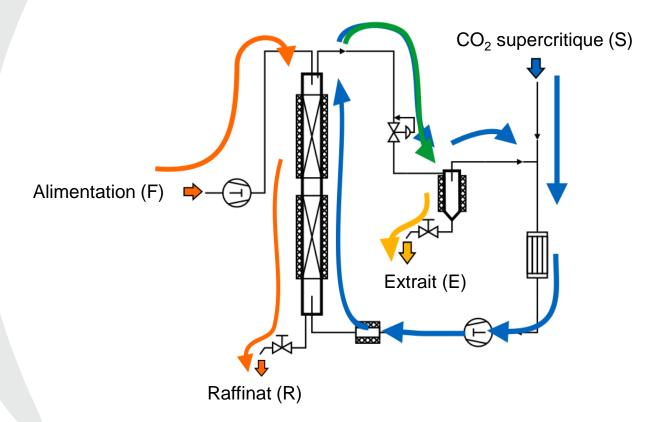
Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France

----Introduction

Procédés séparatifs utilisant le CO₂ supercritique :

- Extraction sur biomasse solide
- Fractionnement de mélanges liquides

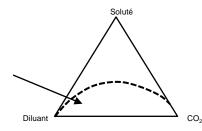
Fractionnement par CO₂ supercritique


→ Procédé sous pression, propre, sélectif, continu et compact

Plan de l'intervention :

- Principe du procédé de fractionnement supercritique
- Exemples d'applications
- Etude de cas
 - Purification du sclaréol

Principe du procédé


Principe du procédé

Paramètres opératoires à prendre en compte

✓ Au préalable

Domaine de Pression, Température, Composition

→ Mélange biphasique

 $\Delta \rho > 150 \text{ kg/m}^3 \rightarrow \text{Pression limit\'ee}$

- ✓ Pression, Température ; Rapport débit de solvant/débit d'alimentation (S/F)
 Sans reflux ou avec reflux
 - → Efficacité de la séparation

Exemples d'applications

Parfums/Cosmétique

Purification de composés d'intérêt issus d'huiles essentielles ou de concrètes

Limonène, linalol, sclaréol...

Cosmétique/Nutraceutique/Alimentation

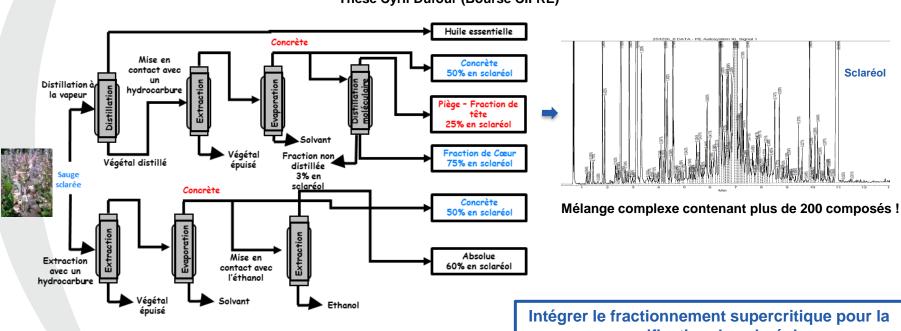
Fractionnement d'huiles

Enrichissement en acides gras polyinsaturés Récupération de tocophérols et de β-carotène

Alimentation/Arômes

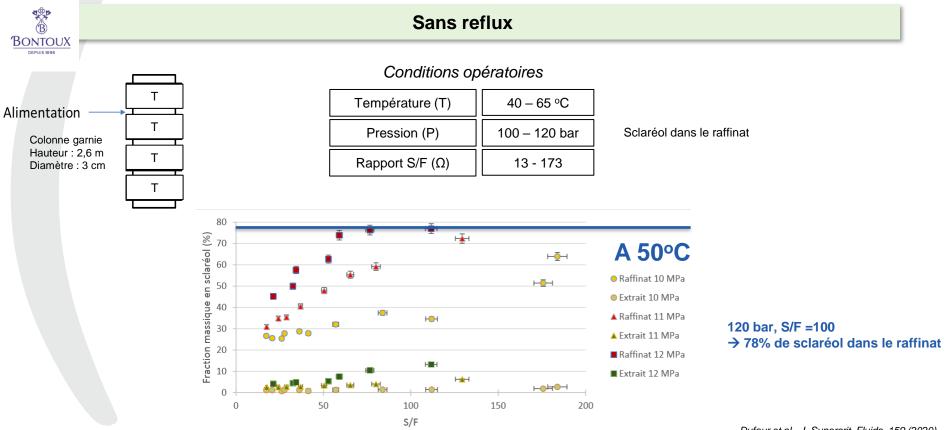
Application au domaine des boissons

Désalcoolisation de boissons Extraction d'arômes



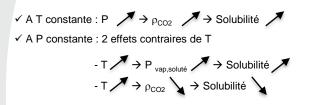
Etude de cas - Purification du sclaréol

Contexte

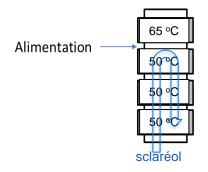

Thèse Cyril Dufour (Bourse CIFRE)

purification du sclaréol

Etude de cas – Purification du sclaréol



Etude de cas – Purification du sclaréol



Avec un reflux interne

Rétrosolubilité:

- à basse P : T → Solubilité `\
- à haute P : T → Solubilité

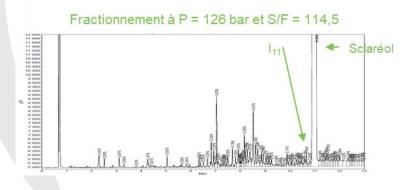
Optimisation des conditions opératoires

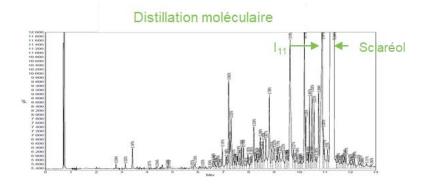
Pression: 126 bar - S/F: 114,5

% sclaréol dans le raffinat X_R : 75,3%

% sclaréol dans l'extrait X_E : 4,6%

Etude de cas – Purification du sclaréol

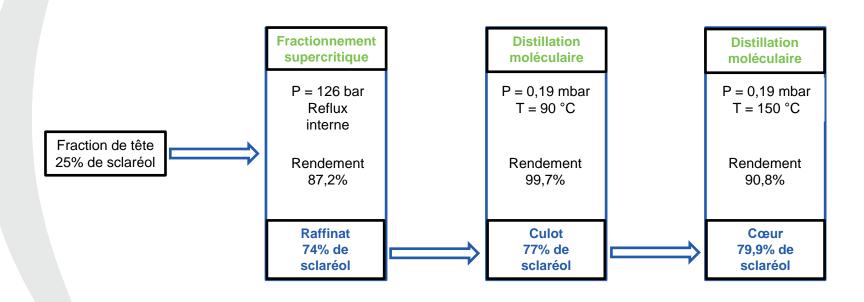

Avec un reflux interne


Optimisation des conditions opératoires

Pression: 126 bar - S/F: 114,5

% sclaréol dans le raffinat X_R : 75,3%

% sclaréol dans l'extrait X_E : 4,6%

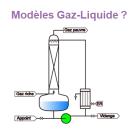


Etude de cas 1 – Purification du sclaréol

Couplage fractionnement supercritique et distillation moléculaire

Conclusion

Points forts


Procédé propre, continu et compact
Températures douces
Pressions modérées

Alternative pour des séparations difficiles
Forte sélectivité

Point faible

Encore peu développé à l'échelle industrielle

→ Besoin de plus d'études pour développer des outils de changement d'échelle

Modèles Liquide-Liquide?

Merci pour votre attention

Christelle.crampon@univ-amu.fr